PRECISION LENS MOLDING OF CHALCOGENIDE OPTICS

Jayson J. Nelson 22 Apr 2015

PRECISION LENS MOLDING OF CHALCOGENIDE OPTICS

- Global markets are looking for low cost materials that satisfy infrared imaging requirements and can be manufactured in commercial quantities (IR equipment sales up, prices coming down).
- Chalcogenide materials offer a clear path for new product development and high tech applications due to their unique properties and ability to be tailored to specific customer needs.
- Recent developments in low cost preforms and molding technology enable rapid changes in the market.

INFRARED TRANSMISSION

Infrared Atmospheric Transmission Spectrum

for a 1.8 km horizontal path at sea level with 40% relative humidity

THERMAL IMAGING SPECTRA

Source of Images: Wikipedia

WHY CHALCOGENIDES?

All IR materials have trade-offs

- Alkali Halides: ideal transmission, low dispersion, extremely hygroscopic, very soft
- Silver/Thallium Halides: good transmission, extremely soft, HIGHLY toxic
- Alkaline earth fluorides: slightly hygroscopic, poor LWIR transmission, unique n, v and dn/dT
- Ge: high index, near zero LWIR dispersion, opaque when heated and huge dn/dT (0.0004/K)

Source of data: SCHOTT NA

- ZnSe, ZnS (clear): Good transmission, moderate dn/dT, but high dispersion and scatter
- GaAs, CdTe: Unique combination of n and v, but expensive and hard to get in large aperture
- Chalcogenide (IRG) glasses: Good transmission (can include visible), scalable, moldable, tunable properties, sensitive to thermal effects

MATERIAL COMPARISONS

Chalcogenides have their strength in dn/dT and color correction of optical systems

OPTICAL PROPERTIES

dn/dt For Different Materials

WHY MOLDING?

Precision Lens Molding Benefits

- Manufacture of complex shapes not possible with conventional grinding & polishing
- Lower ramp up costs for high volume applications than single point diamond turn or conventional polishing
- Lower unit manufacturing cost than single point diamond turn for low rate initial production through high volume
- High fidelity reproduction

* 15mm Meniscus Chalcogenide Lens, Uncoated

NEW IR MOLDING CAPABILITIES

- Joint development program between Edmund Optics[®] and Fisba Optik AG
- Focused on development of Precision Lens Molding (PLM) and Finished Lens Molding (FLM) competencies for IR products
- Completely new facility in Tucson, AZ
- Class 1000 clean facility, localized class 100
- Toshiba GMP-311 PLM machines with Scara robot and tray handler

IR MOLDING CAPABILITIES

Equipment Capabilities

- Toshiba GMP 311V
- Vacuum molding capability
- Auto loader and tray handler enables efficient mid to high volume production
- Single cavity and multi cavity tooling
- Non conventional approach for tool development empowers manufacture of diffractives and special features

Machine Loading

Chamber Evac. Nitrogen Fill

Heating

Molding

Machine Unload

IR MOLDING CAPABILITIES

Manufacturing Capabilities

- Planar, spherical, aspheric surfaces
- Positive, negative, or meniscus lens designs
- Flow modelling and tool compensation programs
- Manual (low volume) or automated (mid – high volume)
- Precision equal to or better than industry standard

Surface Description	Manufacturing Cost	Comments
Planar - Convex (sphere or apshere)	++	Rotationally symmetric
Bi-convex; spherical - aspheric	++	
Bi-convex; aspheric - aspheric	++	Only slightly more expensive than sph - asph
Meniscus (spherical or aspheric)	+	
Bi-concave; spherical - aspheric	-	Post processing may be required
Bi-concave; aspheric		Very high risk

	Standard Quality	Precision Quality
Diameter	3 - 30mm	3 - 30mm
Aspheric Figure Error (fringes @ 633nm)	5	2
Irregularity (fringes @ 633nm)	2	1
Vertex Radius	+/- 1%	+/- 0.1%
Decenter (mm)	±0.015	±0.005
Wedge (arcmin)	5	2
Center Thickness Tolerance (mm)	±0.030	±0.015
Diameter Tolerance(mm)	±0.025	±0.010
Surface Quality	60-40	20-10

IR MOLDING RESULTS

First Pressings Results

- 25mm meniscus lens
- CX asphere, CC sphere
- Uncorrected tool surfaces

- Tool 0.67 λ power, 0.20 λ Irregularity
- Lens 0.52λ Power
- Lens 0.33λ Irregularity

IR MOLDING DEVELOPMENT TO MEET YOUR APPLICATION NEEDS

- Ball preforms and net shape preforms
- Simple geometries planar, spherical, aspheric
- Complex shapes under development diffractives
- Free form shapes in development plan arrays

	Preform Type			
Lens Geometry	Ball Preform	Plano Plano	Lenslet (Plano - Convex)	Lenslet (Bi-Convex)
Bi-Convex	\checkmark			\checkmark
Equal Meniscus	\checkmark		✓	
Positive Meniscus	\checkmark		✓	
Negative Meniscus	\checkmark		√	
Bi-Concave		\checkmark		

FLM VS. PLM

Finished Lens Molding (FLM)

Precision Lens Molding (PLM)

FLM Considerations

- Lower process costs than precision lens molding (no post processing)
- Higher yields (less handling)
- Higher preform costs

PLM Considerations

- Large clear aperture requirements
- Tight diameter tolerances
- Special features (datums, fiducials, segmenting)

COMPETITIVE COSTING ANALYSIS

Results Matrix

 \checkmark Provides comparison between SPDT, FLM, and PLM processing

- ✓ Compared 5 different lens volumes 7.5mm to 25mm diameter
- ✓ Compared 12 different quantities 25 pieces to 100,000 AU
- ✓ Analyzed with NRE separate & amortized over order quantity
- ✓ Crossover point is highly dependent on lens volume & order quantity

Assumes 25 mm diameter x 8 mm OAL meniscus optic

Lens Diameter (mm)	Crossover Quantity (AU)
7.5	5,000
10	1,000
15	350
20	90
25	75

* Approximate values shown, reference only * Assumes Amortized Tooling NRE

PRECISION LENS MOLDING OF CHALCOGENIDE OPTICS

Summary

✓ Global markets are looking
The Opportunity Exists

✓ Chalcogenide materials ... for new product development
 The Opportunity Is Real

✓ Recent developments in low cost preforms
 The Opportunity Is Now

HOW CAN I HELP YOU?

Jayson Nelson

Manufacturing Technology Manager jnelson@edmundoptics.com +1-856-547-3488

