

TECHSPEC® LINSEN

TECHSPEC® PRISMEN

TECHSPEC® FILTER

Sie benötigen ein Angebot? Kontaktieren Sie uns noch heute!

Tel.: +49 (0) 721 6273730 E-Mail: sales@edmundoptics.de

Fax: +49 (0) 721 6273750 Chat: www.edmundoptics.de/contact

www.edmundoptics.de

LINSEN

PLANKONVEXE (PCX) LINSEN UND DOPPELKONVEXE (DCX) LINSEN

Plankonvexe Linsen besitzen eine positive Brennweite sowie eine plane und eine konvexe Oberfläche. Sie eignen sich ideal zur Kollimation und Fokussierung von monochromatischem Licht. Doppelkonvexe Linsen haben eine positive Brennweite sowie zwei konvexe Oberflächen mit gleichem Krümmungsradius. Sie werden für Relaisabbildungen sowie für abbildende Systeme mit vergleichbaren Bild- und Objektweiten empfohlen.

PLANKONYEXE (PCX) LINSEN UND DOPPELKONYEXE LINSEN (DCX)					
	Größe	Brennweitenbereich	Wellenlängenbereich	Beschichtung	
Standardmäßige PCX- und DCX-Linsen	1 - 75 mm	0,6 - 750 mm	0,4 - 1,6 μm	unbeschichtet oder 5 AR Versionen	
PCX Linsen für Laser	6 - 50 mm	6 - 750 mm	0,2 - 2,2 μm	unbeschichtet o. 11 AR Versionen	
PCX und DCX Linsen aus UV Quarzglas	6 - 50 mm	9 - 400 mm	0,2 - 2,2 μm	unbeschichtet oder 4 AR Versionen	
PCX Siliziumlinsen (Si)	25 mm	25 - 250 mm	1,2 - 7,0 µm	unbeschichtet oder 1 AR Version	
PCX Kalziumfluoridlinsen (CaF ₂)	12,7 - 50,8 mm	18 - 150 mm	0,193 - 7,0 µm	unbeschichtet	
PCX Germaniumlinsen (Ge)	25 - 50 mm	25 - 250 mm	2,0 - 16,0 μm	unbeschichtet oder 3 AR Versionen	
Germanium (Ge) Meniskuslinsen	25 - 50 mm	25 - 100 mm	2,0 - 16,0 μm	unbeschichtet oder 2 AR Versionen	
PCX Zinkselenidlinsen (ZnSe)	12,7 - 50,8 mm	25,4 - 500 mm	0,6 - 16,0 µm	unbeschichtet oder 1 AR Version	

ZYLINDERLINSEN

Zylinderlinsen haben eine plane und eine zylindrische Oberfläche. Sie können positive oder negative Brennweiten haben. Sie werden typischerweise eingesetzt, um einfallendes Licht auf eine Linie zu fokussieren oder um das Bildseitenverhältnis zu verändern.

ZYLINDERLINSEN				
	Größe	Brennweitenbereich	Wellenlängenbereich	Beschichtung
achromatische Zylinderlinsen	12,5 mm	25 - 100 mm	0,4 - 1,0 μm	MgF, beschichtet
Zylinderlinsen aus UV Quarzglas	12,5 - 25 mm	25 - 150 mm	0,2 - 2,2 μm	unbeschichtet oder 1 AR Version
PCX Zylinderlinsen	5 - 50 mm	6 - 150 mm	0,4 - 1,6 μm	unbeschichtet oder 4 AR Versionen
negative Zylinderlinsen	6,25 - 50 mm	-6,25 bis -150 mm	0,4 - 1,6 μm	unbeschichtet oder 4 AR Versionen
linsenförmige Arrays	10 x 10 mm	1,6 - 10,9 mm	0,2 - 2,2 μm	unbeschichtet

ACHROMATE

Achromate bestehen aus zwei miteinander verkitteten optischen Komponenten, um sphärische und chromatische Aberrationen zu reduzieren bzw. zu beseitigen. Achromatische Linsen bieten im Vergleich zu Einzellinsen eine kleinere Punktgröße und eine höhere Bildqualität.

ACHROMATE					
	Größe	Brennweitenbereich	Wellenlängenbereich	Beschichtung	
standardmäßige Achromate	1 - 128 mm	1,5 - 1.900 mm	0,4 - 1,0 μm	MgF ₂ , VIS 0° oder VIS-NIR	
negative Achromate	6,25 - 40 mm	-7,5 bis -150 mm	0,4 - 0,7 μm	MgF ₂ , VIS 0° oder VIS-NIR	
achromatische Tripletts	6,25 - 25 mm	10 - 50 mm	0,4 - 0,7 μm	MgF,	
asphärische Achromate	9 - 25 mm	12 - 50 mm	0,4 - 0,7 μm	MgF, oder VIS 0°	
Achromate für den nahen UV Bereich	6,25 - 50 mm	12,5 - 125 mm	0,3 - 0,7 μm	BBAR für 350 - 700 nm	
achromatische Tripletts für UV Bereich	30 mm	36 - 180 mm	0,2 - 2,2 μm	unbeschichtet oder MgF ₂	
Achromate für den Nahinfrarotbereich	6 - 50 mm	9 - 200 mm	0,7 - 1,6 μm	NIR II oder SWIR	
Achromate für mittleren IR Bereich	15 - 30 mm	40 - 75 mm	3,0 - 5,0 μm	BBAR für 3 - 5 µm	
Achromate für langwelligen IR Bereich	30 mm	40 - 75 mm	8,0 - 12,0 μm	BBAR für 8 - 12 µm	

ASPHÄREN

Asphären haben eine Oberfläche, deren Radius sich mit dem Abstand zur optischen Achse verändert. Dies eliminiert die sphärische Aberration und reduziert andere Aberrationen, wodurch im Vergleich zu gewöhnlichen sphärischen Linsen eine deutlich bessere optische Abbildung entsteht.

ASPHÄREN				
	Größe	Brennweitenbereich	Wellenlängenbereich	Beschichtung
Präzisionsasphären	10 - 50 mm	9 - 50 mm	0,4 - Ĭ,6 µm	unbeschichtet oder 2 AR Versionen
UV Quarzalas Präzisionsasphären	15 - 50 mm	12,5 - 60 mm	0,2 - 2,2 µm	unbeschichtet oder 7 AR Versionen
Best Form-Asphären	25 mm	25 - 100 mm	0,532 - 1,064 µm	3 AR Versionen
asphärische Achromate	9 - 25 mm	12 - 50 mm	΄ 0,4 - 0,7 μm	MgF, oder VIS beschichtet
Plastikasphären	10 - 25 mm	9 - 75 mm	0,4 - 1,2 µm	unbeschichtet oder 2 AR Versionen
Asphären mit kleinem Durchmesser	1,8 - 9,9 mm	0,7 - 22 mm	0,4 - 1,6 µm	unbeschichtet oder 3 AR Versionen
IR Asphären mit kleinem Durchmesser	3,5 - 6,5 mm	1,5 - 4 mm	2,0 - 14,0 µm	unbeschichtet oder 3 AR Versionen
Germaniumasphären (Ge)	25 mm	12,5 - 100 mm	2,0 -16,0 µm	unbeschichtet oder 2 AR Versionen
Zinkselenidasphären (ZnSe)	25,4 - 50,8 mm	12,7 - 50,8 mm	0,6 - 16,0 µm	unbeschichtet
Siliziumasphären (Si)	25 mm	25 - 50 mm	1,2 - 7,0 µm	unbeschichtet oder 1 AR Version
IG6 Asphären	25 - 50 mm	12,5 - 50 mm	1,0 - 12,0 µm	unbeschichtet
Asphärische Zylinderlinsen	25 mm	2Ó - 50 mm	Ó,4 - 1,6 μm	unbeschichtet oder VIS beschichtet

FILTER

BANDPASSINTERFERENZFILTER

Bandpassfilter transmittierten einen Teil des Spektrums, während alle anderen Wellenlängen geblockt werden. Unsere Bandpassfilter sind mit verschiedenen Bandbreiten erhältlich. Laserlinienfilter haben typischerweise ein sehr schmales Transmissionsband (2 - 5 nm). Fluoreszenzfilter wurden entwickelt, um möglichst viel Energie des Anregungs- und Emissionsbandes zu transmittieren. Sie haben deshalb relativ große Bandbreiten (20 - 70 nm). Unsere Auswahl an 10 nm-Filtern für die chemische, Umwelt- und Elementanalyse gehört zur umfangreichsten der Welt. Traditionell dampfbeschichtete Filter bieten ein exzellentes Preis-Leistungs-Verhältnis, hart beschichtete Filter noch bessere optische Eigenschaften und eine erhöhte Beständigkeit. Interferenzfilter sind extrem winkelabhängig, dies muss bei der Integration und Montage in ein optisches System berücksichtigt werden.

BANDPASSINTERFERENZFILTE	R		
	Zentralwellenlängenbereich	Optische Dichte	Größe
Fluoreszenz-Bandpassfilter	340 - 832 nm	≥ 6	12,5 - 50 mm
Multi-Bandpassfilter	432 - 700 nm	≥ 6	12,5 - 50 mm
Hart beschichtete Bandpassfilter	300 nm - 2 μm	≥ 4	12,5 - 50 mm
Traditionell beschichtete Bandpassfilter	193 nm - 10,6 μm	≥ 3, ≥ 4	12,5 - 50 mm
Laserlinienfilter zur Rauschunterdrückung	325 - 1.064 nm	≥ 4, ≥ 6	12,5 - 50 mm

NOTCHFILTER

Notchfilter blocken einen kleinen Bereich des Spektrums und transmittierten alle anderen Wellenlängen. Die Notchfilter mit dielektrischen Beschichtungen zur Reflexion bestimmter Laserwellenlängen sind mit unterschiedlicher Blockung und verschiedenen Transmissionsbereichen erhältlich, um unseren Kunden die Abwägung zwischen Preis und Leistung zu ermöglichen.

NOTCHFILTER	_		
	Zentralwellenlängenbereich	Optische Dichte	Größe
Standard Notchfilter	355 - 1.064 nm	≥ 4, ≥ 6	12,5 - 50 mm
Nd:Yag Notch Filter für mehrere Wellenlängen	355 - 1.064 nm	≥ 6	12,5 - 50 mm

KANTENFILTER UND DICHROITISCHE FILTER

Langpassfilter transmittieren alle Wellenlängen, die größer als die Grenzwellenlänge sind, während Kurzpassfilter alle Wellenlängen transmittieren, die kürzer als die Grenzwellenlänge sind. Dichroitische Filter haben die gleichen Eigenschaften, allerdings ist garantiert, dass die geblockten Wellenlängen reflektiert werden.

KANTENFILTER UND DICHROITISCHE FILTER				
	Grenzwellenlängenbereich	Optische Dichte	Größe	
variable Kantenfilter	300 - 845 nm	≥ 4	15 x 60 mm	
Langpassfilter	266 nm - 7,3 μm	≥ 2, ≥ 4	12,5 - 50 mm	
Kurzpassfilter	400 - 1.600 nm	≥ 2, ≥ 4	12,5 - 50 mm	
Multiband Bandpassfilter	400 - 1.200 nm	N/A	12,5 - 50 mm	
dichroitische Fluoreszenzfilter	403 - 801 nm	N/A	12,5 - 35.6 mm	
Infrarot- und Kaltlichtspiegel	N/A	N/A	12,5 - 127 mm	
gefasste Kantenfilter	400 - 1.100 nm	≥ 2	M22,5 x 0,5 - M30,5 x 0,5	

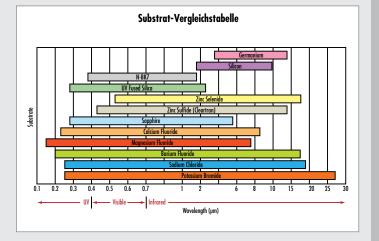
NEUTRALDICHTEFILTER

Neutraldichtefilter (ND Filter) reduzieren die Transmission gleichmäßig über einen bestimmten Spektralbereich. Dazu absorbieren oder reflektieren sie das nicht transmittierte Licht. Sie können für den UV, VIS oder IR Bereich ausgelegt werden und werden hauptsächlich eingesetzt, um eine Überbelichtung bei Kameras und anderen Detektoren zu vermeiden.

NEUTRALDICHTEFILTER			
	Wellenlängenbereich	Optische Dichte	Größe
Absorbierende ND Filter	VIŠ	0,1 - 3,0	12,5 - 50 mm
Reflektierende ND Filter	UV, VIS, NIR, und IR	0,1 - 3,0	12,5 - 50 mm
Nicht-Reflektierende ND Filter	VIS und NIR	0,3 - 3,0	12,5 - 25 mm
Kodak Wratten ND Filter	VIS	0,1 - 4,0	12,5 - 300 mm
runde und eckige variable ND Filter	VIS	0,04 - 4,0	25 - 100 mm
gefasste ND Filter	VIS und NIR	0,1 - 3,0	M22,5 x 0,5 - M77,0 x 0,75

FENSTER

- Das passende Substrat für Ihre Anwendung
- Breite Auswahl von Substraten und Beschichtungen für UV, VIS und IR Anwendungen
- Laserlinien und breitbandige AR-Beschichtungen erhältlich


Barium-, Kalzium- und Magnesium Fluorid

Anwendungen:

- · Geringe Absorption und hohe Zerstörschwelle für
- · Spektroskopie, Halbleiterverarbeitung und kryogengekühlte Wärmebildgebung

Vorteile von Edmund Optics:

- Größen von 5 bis 50 mm
- Oberflächengenauigkeit ½ λ
- Parallelität < 1 arcmin

- · Geringe thermische Ausdehnung und ausgezeichnete Transmission vom UV- bis zum IR-Spektrum
- Interferometrie, Lasergeräte, Spektroskopie und Industrieanwendungen

Vorteile von Edmund Optics:

- Größen 5 bis 50 mm (UV-Spektrum) und 1" bis 8"
- UV-, Excimer- und Standardsubstrat
- AR-Beschichtungen für breitbandige Anwendungen und für Laseranwendungen mit hoher Leistung

SILIZIUM

- Kostengünstiges Substrat mit geringer Dichte für gewichtssensitive IR-Anwendungen
- Spektroskopie, Lasersysteme im mittleren IR-Bereich, THz-Bildgebung

Vorteile von Edmund Optics:

- Größen von 10 bis 50 mm
- Substrat in optischer Güte
- Parallelität < 3 arcmin
- AR-Beschichtung 3 bis 5 µm

N-BK7

Anwendungen:

- Kostengünstige Substrate für VIS und NIR Anwendungen
- Maschinelle Bildverarbeitung, Mikroskopie, Industrieanwendungen

Vorteile von Edmund Optics:

- Größen von 5 bis 75 mm
- Parallelität < 1 arcmin
 Breitbandige AR-Beschichtungen MgF₂, VIS 0°, VIS-NIR, und NIR I
- 7 Laserlinienbeschichtungen zwischen 405 und 1.550 nm

- Hoher Brechungsindex und hohe Knoop-Härte mit Transmission im mittleren und langwelligen IR-Spektrum
- Wärmebildgebung, FLIR und robuste IR-Anwendungen

Vorteile von Edmund Optics:

- Durchmesser 10 bis 75 mm
 Oberflächengenauigkeit ½0 λ bei 10,6 μm
- Parallelität < 1 arcmin
- AR-Beschichtungen für 3 5 μ m, 3 12 μ m und 8 12 μ m

Anwendungen:

- Extrem hart und beständig, gute Transmission vom UV- bis IR-Bereich
- IR-Lasersysteme, Spektroskopie und Geräte für den Einsatz in rauer Umgebung

Vorteile von Edmund Optics:

- Durchmesser 2.5 bis 75 mm
- Parallelität < 3,5 arcmin
- Oberflächengenauigkeit von $\frac{1}{4}$ λ erhältlich

ZINKSELENID UND ZINKSULFID

Anwendungen:

- Geringer Absorptionskoeffizient und hohe Beständigkeit gegenüber thermischen Schockbelastungen
- CO₂-Lasersysteme und Wärmebildgebung

Vorteile von Edmund Optics:

- Durchmesser 10 bis 75 mm
- Oberflächengenauigkeit 1/20 λ bei 10,6 μm
- · breitbandige AR-Beschichtungen

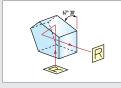
SPIEGEL

- Einfache Integration in eine Vielzahl von Anwendungen von der Strahlumlenkung bis zur maschinellen Bildverarbeitung
- ◆ Optimierte Beschichtungen für UV bis zum langwelligen Infrarotspektrum
- Breite Auswahl an Substraten und Größen für jeden Anwendungsbedarf

Laserspiegel	Größe	Oberflächengenavigkeit	Substrate	Beschichtung	
Laserspiegel	12,5 - 50 mm	1/10 λ	Quarzglas	Nd:YAG, Excimer, Argon-Ionen, Dioden	
verlustarme Laserspiegel	25,4 mm	1⁄8 λ	Quarzglas	Nd:YAG, Ti:Saphir	
breitbandige Laserspiegel	12,5 - 50,8 mm	1⁄10 λ	Quarzglas	UV, VIS, IR, Laser	
Gires-Tournois (GTI) Spiegel	25,4 mm	1⁄8 λ	Quarzglas	Yb:YAG, Yb:KGW	
Laserspiegel für Ultrakurzpulslaser	25,4 mm	1⁄8 λ	Quarzglas	Ti:Saphir, Er:Glas, Ytterbium-dotiert	
präzise Planspiegel optische Planspiegel	Größe 12,7 - 304,8 mm	Oberflächengenauigkeit 1/10 λ, 1/20 λ	Substrate Quarzglas, Zerodur	Beschichtung Aluminium, Gold, Silber	
	, ,	,	• .		
standardmäßige Planspiegel	Größe	Oberflächengenavigkeit	Substrate	Beschichtung	
polierte Oberflächenspiegel	5 - 100 mm	1/4 λ, 1/8 λ, 1/10 λ	Floatglas, Quarzglas	Aluminium, Gold, Silber, dielektrisch	95
Oberflächenspiegel aus Floatglas	5 - 408 mm	4 - 6 λ	Floatglas	Aluminium, Gold	
Metallspiegel	Größe	Oberflächengenavigkeit	Substrate	Beschichtung	
Metallspiegel	25,4 - 76,2 mm	1⁄4 λ RMS	Aluminium	Aluminium, Gold	
off-axis parabolische Metallspiegel	25,4 - 101,6 mm	1⁄4 λ RMS	Aluminium	Aluminium, Gold	
Fokussierspiegel	Größe	Oberflächengenauigkeit	Substrate	Beschichtung	
präzise parabolische Spiegel	76,2 - 412,8 mm	⅓ λ	Floatglas	Aluminium, Gold	
off-axis Parabolspiegel	25,4 - 101,6 mm	1⁄4 λ, 1⁄2 λ, 1⁄4 λ RMS	Kalknatronglas, Aluminium	Aluminium, Gold	600
präzise sphärische Spiegel	25,4 - 317,5 mm	1/4 λ, 1/8 λ	Floatglas	Aluminium, Gold	
Spezialspiegel	Größe	Oberflächengenauigkeit	Substrate	Beschichtung	
kegelförmige Spiegel	1 - 15 mm	½ λ	N-BK7	Aluminium	
rechtwinklige Spiegel	3 - 75 mm	1⁄8 λ	N-BK7	Aluminium, Gold, Silber, dielektrisch	
konvexe sphärische Spiegel	25 - 50 mm	1⁄4 λ	N-BK7	Aluminium, Gold, Silber	

PRISMEN

RECHTWINKLIGE PRISMEN


Anwendungen:

- Ablenkung der Blickrichtung um 90°
- Endoskopie, Mikroskopie, Laserjustage und medizinische Instrumente

Vorteile von Edmund Optics:

- Größen von 0,18 bis 75 mm
- N-BK7, N-SF11 und UV Quarzglas Substrate
- · Standardtoleranzen und enge Toleranzen im Angebot (Winkeltoleranz ±5 arcmin bis ±15
- Unbeschichtet, verschiedene AR- und metallische Beschichtungen

PENTAPRISMEN

Anwendungen:

Beschichtung

- · Ablenkung der Blickrichtung um 90° ohne Spiegelung oder Drehung des Bildes
- · visuelle Zieleinrichtungen, Projektions-, Mess- und Anzeigesysteme

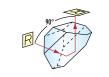
Vorteile von Edmund Optics:

- Größen von 0,5 bis 50 mm
- N-BK7- und UV-Quarzglassubstrate
- Standardtoleranzen und enge Toleranzen im Angebot (Winkeltoleranz ±3 bis ±1 arcmin) • Unbeschichtet, MgF₂-, VIS 0°- und UV-AR-

DACHKANTPRISMEN

Anwendungen:

- Ablenkung der Blickrichtung um 45°, mit oder ohne Spiegelung und Drehung des Bildes
- Stereomikroskope und Pechan-Baugruppen


Anwendungen: · Ablenkung der Blickrichtung um 90° mit

- Spiegelung und Drehung des Bildes
- Mikroskope und Teleskopokulare

Vorteile von Edmund Optics:

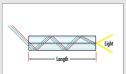
- Größen von 10 bis 25 mm
- N-BK7-Substrat
- · Unbeschichtete Eingangs- und Ausgangsflächen sowie Beschichtung mit Protected Aluminium und Inconel-Schutzschicht

Vorteile von Edmund Optics:

- Größen 9 mm und 14 mm
- N-BK7-Substrat
- · Auflösung 6 arcsec

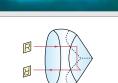
Anwendungen:

- Homogenisiert ungleichmäßige Lichtquellen
- LED-Leuchten, Mikroprojektoren und Speckle-



Anwendungen:

· Geeignet für Justagearbeiten aufgrund der präzisen 180°-Rückreflektion


RETROREFLEKTOREN

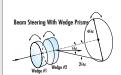
· Interferometrie, Prüfung von Bohrungen, Abstandsmessungen und Lasertracking

Vorteile von Edmund Optics:

- Eingangs- und Ausgangsaperturgrößen von 2 bis 20 mm, Längen von 25 bis 300 mm
- N-BK7- und Quarzglassubstrate
- Versionen mit niedriger, standardmäßiger und hoher numerischer Apertur
- Hexagonale Eingangs- und Ausgangsflächen

Vorteile von Edmund Optics: • Größen von 6,35 bis 127 mm

- N-BK7- und UV-Quarzglassubstrate
- Strahlabweichung ±1 arcsec bis ±30 arcsec
- · Unbeschichtet, Aluminium-, Silber- und Gold-
- Ungefasste, gefasste und hohle Versionen


DOYE- UND RHOMBOIDPRISMEN

- Zur Drehung oder Verschiebung von Bildern
- Interferometrie, Astronomie-Binokulare und Lasergeräte

Vorteile von Edmund Optics:

- Größen von 0,5 bis 50 mm
- N-BK7-Substrat
- Unbeschichtet, VIS 0° AR-Beschichtung und mit Metallbeschichtung aus Protected Aluminium

KEILPRISMEN

- Ideal zur Strahllenkung
- · durchstimmbare Laser, anamorphische Bildgebung

Vorteile von Edmund Optics:

- nominelle Strahlabweichung 0,5° 15°
- N-BK7- und UV-Quarzglassubstrate
- · Unbeschichtet, VIS 0°- und VIS-NIR AR-Beschichtungen

STRAHLTEILER und POLARISATIONSFILTER

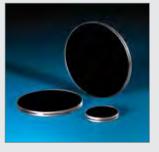
STRAHLTEILERWÜRFEL

Strahlteilerwürfel setzen sich üblicherweise aus zwei rechtwinkligen Prismen zusammen und sind in Größen von 5 bis 50 mm erhältlich. Sie bieten eine einfache Integration mit 0° Einfallswinkel. Diese Strahlteiler können für eine Vielzahl von Laser-, Hochleistungs-, nicht-polarisierenden und polarisierenden Anwendungen optimiert werden.

STRAHLTEILERWÜRFEL					
	Größe	Wellenlängenbereich	Teilverhältnis		
Standard Strahlteilerwürfel	5 - 50 mm	400 - 700 nm	30/70, 50/50, 70/30		
breitbandige polarisierende Strahlteilerwürfel	5 - 50 mm	420 -1.100 nm	Refl. S-Pol. / Trans. P-Pol.		
polarisierende Strahlteilerwürfel für hohe Leistungen	12,7 mm	355 - 1.064 nm	Refl. S-Pol. / Trans. P-Pol.		
polarisierende Strahlteilerwürfel für Laserlinien	5 - 50 mm	488 - 1.064 nm	Refl. S-Pol. / Trans. P-Pol.		
polarisierende Wire-Grid-Strahlteilerwürfel	25,4 mm	400 - 700 nm	Refl. S-Pol. / Trans. P-Pol.		
breitbandige nicht polarisierende Strahlteilerwürfel	5 - 50 mm	430 - 1.620 nm	50/50		
Strahlteiler mit lateralem Versatz	10 - 20 mm	430 - 1.080 nm	50/50		

STRAHLTEILERPLATTEN

Strahlteilerplatten sind in einer Vielzahl von Größen, Beschichtungen und Substraten verfügbar und bieten eine einfache Lösung für eine Vielzahl von Anwendungen. Sie sind meist auf einen 45° Einfallswinkel ausgelegt und für Anwendungen von UV bis Infrarot erhältlich.


STRAHLTEILERPLATTEN				
	Größe	Wellenlängenbereich	Teilverhältnis	
Strahlteilerplatten	12,5 - 356 mm	400 - 700 nm	25/75, 30/70, 40/60, 50/50, 70/30, 75/25	
Strahlteilerplatten für UV	10 - 50 mm	250 - 450 nm	30/70, 50/50, 70/30	
elliptische Strahlteilerplatten	12,5 - 50 mm	400 - 1.100 nm	50/50	
Strahlteilerplatten für VIS und NIR	12,5 - 75 mm	400 - 1.100 nm	20/80, 30/70, 40/60, 50/50, 60/40, 70/30, 80/20	
Strahlteilerplatten für den IR-Bereich	25,4 - 50,8 mm	2 - 14 μm	50/50	
polarisierende Strahlteilerplatten	12,5 - 25 mm	420 - 670 nm	Refl. S-Pol. / Trans. P-Pol.	
nicht polarisierende Strahlteilerplatten für Laserlinien	12,5 - 50 mm	355 - 1.064 nm	50/50	
Polka Dot Strahlteiler	12,7 - 50,8 mm	250 - 2.000 nm	50/50	
Pellicle-Strahlteiler	25,4 - 152,4 mm	400 - 700 nm	8/92, 40/40, 33/67, 50/50	
dichroitische Multiband-Filter	12,5 - 35,6 mm	403 - 669 nm	NA	
dichroitische Fluoreszenzfilter	12,5 - 35,6 mm	409 - 801 nm	NA	
dichroitische Strahlkombinierer für Laserstrahlen	12,5 - 50 mm	427 - 659 nm	NA	

POLARISATIONSFILTER

Edmund Optics® bietet eine Vielzahl von dichroitischen, kristallinen oder Wire Grid-Polarisatoren um Licht zu filtern, umzulenken, oder zu polarisieren. Lineare und zirkulare Polarisatoren sind in einer Vielzahl von Größen und Wellenlängen verfügbar.

POLARISATIONSFILTER					
	Größe	Wellenlängenbereich			
Wire Grid Polarisationsfilter	12,5 x 12,5 - 50 x 50 mm	300 nm - 30 μm			
Laserlinienpolarisationsfilter für hohe Leistungen	12,5 - 50 mm	355 - 1.064 nm			
beschichtete Polarisationsfilter für Ultrakurzpulslaser	25,4 mm	750 - 1.090 nm			
lineare Glaspolarisationsfilter	6,25 - 70 mm	400 - 2.000nm			
Nanopartikel Polarisationsfilter mit hohem Kontrast	12,5 - 25 mm	365 nm - 5 μm			
Wollaston und Rochon Polarisationsfilter	25,4 mm	190 nm - 4 μm			
Glan-Taylor, Glan-Laser & Glan-Thompson Polarisationsfilter	25,4 mm	220 nm - 2,2 μm			
Brewsterfenster	10 - 25 mm	633 nm			
lineare oder zirkulare Polarisationsfilter aus Kunststoff	12,5 - 900 x 600 mm	400 - 700 nm			
linearer oder zirkularer Polarisationsfilm	25 - 1.000 mm	400 - 700 nm			

VERZÖGERUNGSPLATTEN

Verzögerungsplatten transmittieren Licht und verändern dabei dessen Polarisation, ohne die Intensität abzuschwächen oder den Strahl abzulenken.

Größe 25,4 - 30 mm	Wellenlängenbereich 465 - 1.650 nm
25,4 - 30 mm	465 - 1 650 nm
25,4 mm	485 - 1.650 nm
12,7 - 50,8 mm	266 - 1.550 nm
25,4 mm	488 - 1.550 nm
25 mm	405 - 650 nm
25,4 mm	3 - 9 µm
	12,7 - 50,8 mm 25,4 mm 25 mm

Warum KATALOGOPTIKEN?

QUESTIONS? CHAT LIVE NOW.

SIE FINDEN NICHT DAS PASSENDE PRODUKT?

- Schnelle Anpassung von Katalogoptiken Lieferzeiten ab nur 2 Wochen
- Kundenspezifische Anpassungen und Sonderanfertigungen möglich www.edmundoptics.de/modify

Hello, How may I help you? START CHATE

- Email Support

Sie benötigen ein Angebot? Kontaktieren Sie uns noch heute!

Tel.: +49 (0) 721 6273730 E-Mail: sales@edmundoptics.de
Fax: +49 (0) 721 6273750 Chat: www.edmundoptics.de/contact