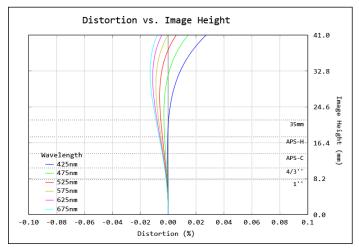
TECHSPEC[®] LS SERIES LINE SCAN LENSES #35-443 • 2.5X • f/2.9 - f/22.0

TECHSPEC® LS Series Line Scan Lenses are designed for 82mm, 16K line scan cameras with 5µm pixels. These low distortion lenses feature an attached beamsplitter for coaxial inline illumination. These lenses are available with and without the beamsplitter. The locking iris is adjustable from f/2.9 to f/22.0, and the V-Mount provides ease of adjustment and alignment. The uniform and high resolution performance across the entire image makes these lenses ideal for applications such as electronics, flat panel display, and semiconductor wafer inspections.

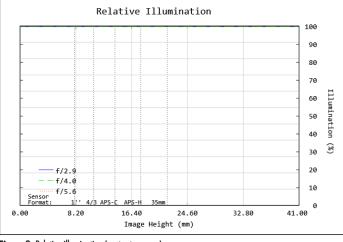
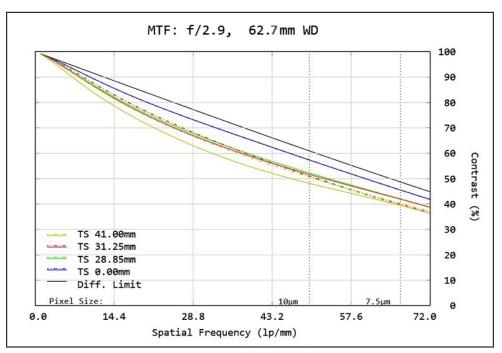


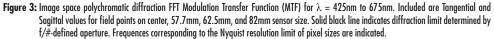
Magnification:	2.5X		
Magnification Range:	2.35X - 2.65X		
Focal Length:	117mm		
Max. Sensor Format:	82mm		
Camera Mount:	V-70 Mount		
Aperture (f/#):	f/2.9 - f/22.0		
Object Space NA:	0.11		
Distortion %:	<0.05%		
Beamsplitter Included:	Yes		

Working Distance:	62.7mm @ 2.5X		
Туре:	Line Scan Lens		
Total Track:	529mm @ 2.5X		
Length:	157.5mm		
Front Diameter:	95mm		
Diameter:	75mm		
AR Coating:	425 - 675nm BBAR		
RoHS:	Compliant		
Weight:	1308g		

At Primary Magnification (2.5X)					
Sensor Size	28.7 mm ¹	57.7mm ¹	62.5 mm ¹	82 mm ¹	
Field Of View ¹	11.5mm	23.1mm	25.0mm	32.8mm	

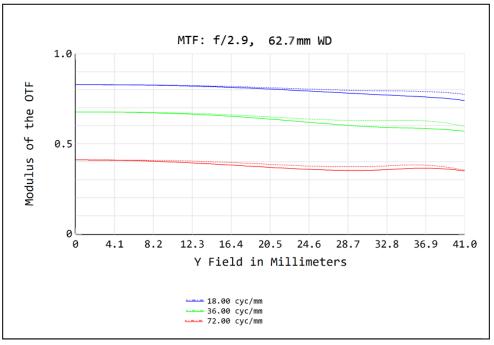
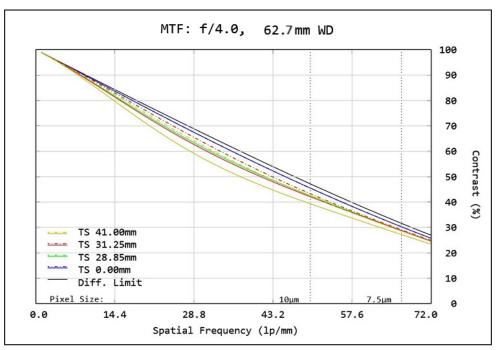
1. Linear line scan array

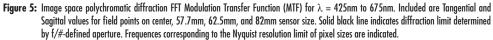




Figure 1: Distortion at the maximum sensor format. Positive values correspond to pincushion distortion, negative values correspond to barrel distortion. Figure 2: Relative illumination (center to corner)

In both plots, field points corresponding to the image circle of common sensor formats are included. Plots represent theoretical values from lens design software. Actual lens performance varies due to manufacturing tolerances.

MTF & DOF: f/2.9 WD: 62.7mm HORIZONTAL FOV: 32.8mm


Figure 4: Image space polychromatic FFT Modulation Transfer Function MTF vs. Field for $\lambda = 425$ nm to 675nm. Included are Tangential and Sagittal values for 72, 36 and 18 linepairs/mm (image space).

Plots represent theoretical values from lens design software. Actual lens performance varies due to manufacturing tolerances.

MTF & DOF: f/4.0 WD: 62.7mm HORIZONTAL FOV: 32.8mm

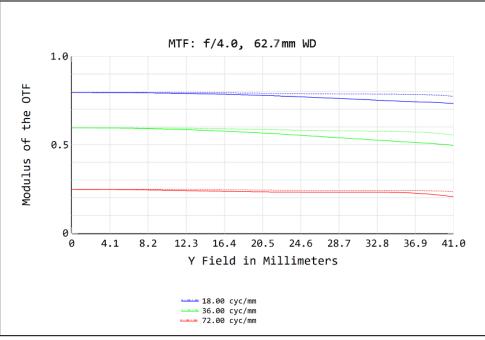


Figure 6: Image space polychromatic FFT Modulation Transfer Function MTF vs. Field for $\lambda = 425$ nm to 675nm. Included are Tangential and Sagittal values for 72, 36 and 18 linepairs/mm (image space).

Plots represent theoretical values from lens design software. Actual lens performance varies due to manufacturing tolerances.

