

BWSpec[®] 4.11 Software User Manual

19 Shea Way, Newark, DE 19713, USA Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

290020235-L (2018/11/29)

Table of Contents

1	Inti	roduction	1					
2	Installation							
3	Supported Operating Systems							
4	Minimum System Requirements*							
5	Software & Hardware Installation							
6								
7	Ма	in Window	7					
8	Ме	nu Bar	8					
9	File	2	8					
9	.1	Open Spectrum						
9	.2	Save Selected Spectrum	9					
9	.3	Save All Spectra As(Manually)	9					
9	.4	Save All Spectra(Automatically)	10					
9	.5	Save All Spectra into a BIN File	10					
9	.6	Export Data	10					
9	.7	Set Save Data Format	11					
9	.8	Command Center	11					
9	.9	Excel	11					
9	.10	Timeline Load	12					
9	.11	Print	12					
9	.12	File Convert	12					
9	.13	Exit	12					
10	V	/iew	13					
1	0.1	Show In Overlay	13					
1	0.2	Show In Sequence	14					
1	0.3	Clear All Spectral Data	14					

10.4	Display Scales	15
10.5	Custom Setting	16
10.6	Spectrum List Panel	17
10.7	Spectrum Information Panel	17
10.8	Spectrometer Control Panel	18
11	Acquire	19
11.1	Acquire One Spectrum	19
11.2	Acquire Overlay	19
11.3	Acquire Continuously	19
11.4	Stop	20
11.5	Acquire Dark	20
11.6	Acquire Reference	20
11.7	Dark Compensate Enable/Disable	20
11.8	Acquisition Tips	21
12	Spectral Function	22
12.1	Baseline Removal	23
12.2	Smoothing	24
12.3	Derivative	25
12.4	Peak Analysis	25
12.5	Batch Re-Process	26
12.6	Spectra Math	27
1 3	Tools	28
14	Plug-In	29
14.1	Plug-In Manager	29
15	Setup	30
15.1	Workspace	30
15.2	Flash Access	31
15.3	Spectrometer Info	31
19 She	a Way, Newark, DE 19713, USA Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bv	wtek.com

290020235-L (2018/11/29)

Your Mobile Spectroscopy Partner

15.4	Hardware Setup	32
15.5	BAC151x Camera	32
15.6	Color Setup	32
15.7	Experiment Setup	33
15.8	Raman Instrument Experiment Example:	37
15.9	USB Reset	39
16 H	lelp	39
17 L	anguage	39
18 To	olbar	40
18.1	Open	40
18.2	Save	40
18.3	Print	40
18.4	Excel	41
18.5	Integration Time Control	41
18.6	Acquire Control	41
18.7	Reset Graph	41
18.8	Clear Display	42
18.9	Display Scales	42
18.10	BAC151x Control	42
19 Sp	ectrum List Panel	43
20 Sp	ectrum Information Panel	44
21 Sp	ectrometer Control Panel	45
	Enable Cursor	
	Dual Chart	
21.3	X Axis Unit	47
	Y Axis Type	
	Acquire Control	
	atus Bar	

290020235-L (2018/11/29)

23	Hardware Setup	50
23.1	1 Common Setting	50
23.2	2 AuxPort	51
23.3	3 Probe Setup	51
24	Plug-In Manager	52
24.1	1 Baseline Removal Plug-in	52
24.2	2 BAC151x Camera Plug-in	53
24.3	3 Export Data Plug-in	53
24.4	4 Irradiance Calibration Plug-in	54
24.5	5 Linearity Correction Plug-in	58
24.6	6 Performance Test Plug-in	64
24.7	7 Raman Shift Calibration Plug-in	72
24.8	8 Reference Material Correction Plug-in	72
24.9	9 Relative Intensity Correction Plug-in	74
24. 1	10 Spectra Math Plug-in	78
24. 1	11 System Response Standardization	80
24. 1	12 Timeline Plug-in	80
24. 1	13 Wavelength Calibration Plug-in	
25	Color Measurement	84
26	Irradiance Ratio File Data Definition	95
27	Definition of Irradiance Data File Format	
Арре	endix A: Declaration of TXT File	
Арре	endix B: Declaration of TXTR File	101
Арре	endix C: Peak Property Values	105

1 INTRODUCTION

BWSpec[®] 4 is a Spectrometer Data Acquisition and Analysis Software Program. It supports three types of B&W Tek spectrometer interfaces: RS-232, USB 2.0, and USB 3.0.

There are significant changes from previous versions. Existing users using **BWSpec v4.04 or lower** should pay attention to the following notable differences in **BWSpec v4.10+**:

- New application-based Workspace introduced. The software now has 2 workspaces selectable by the user: BWSpec and Raman. The BWSpec workspace retains the original look. Changes in Raman workspace include:
 - a. Irrelevant x-axis unit types are removed from Spectrometer Control Panel, including Wavelength (nm), Wavelength linear(nm), Wavenumber linear(cm-1).
 - b. Irrelevant y-axis types are removed from Spectrometer Control Panel, including Reference, Transmission/Reflectance, Absorbance, and Absolute Irradiance.
 - c. Unused outputs are removed Acquire Controls: output 2, 3, 4, and 5.
 - d. Irrelevant utilities are removed from the tools menu, such as Linearity Correction, Irradiance Calibration, Reference Material Correction, and System Response Standardization.
 - e. Dark Compensate option is removed from the Acquire menu.
 - f. Acquire Reference is removed from the tool bar.
 - g. Dark spectrum is required to complete an acquisition, and it must have the same integration time as the signal spectrum to ensure proper subtraction.
- Added drag and drop function for opening spectral files. Such files can be opened by selecting from Windows Explorer and dropping into the Graph window.
- Added a new file type TXTR, which has an extra data block to store the Relative Intensity Correction ratio spectrum. This ensures the integrity of spectral files and makes it easy to transport and reprocess them without loss of critical information.
- Added data processing audit trails to TXTR spectral file header to record the treatment steps for the Processed Data block starting from the Raw Data block. These are the numbered Pretreat lines and can be viewed in Spectrum List Panel.
- Added Probe Setup tab to Hardware Setup under Setup menu to configure probes.
- Added Experiment Setup in Setup to save data acquisition and treatment configurations. These configuration files can be loaded to reproduce previous experiment conditions.
 - a. Added Probe selection to Experiment Setup to allow easy selection of probes from a list of probes pre-configured in Setup/ Hardware Setup/ Probe Setup.
 - b. Added Spectral Professing function to Experiment Setup to perform predefined data processing.
 - c. Added Analytics function to Experiment Setup to perform predefined data analysis.

- d. Improved Timeline function and added it to Experiment Setup to perform kinetic measurements and analysis.
- Added safeguard to prevent Raw Data and Dark data blocks from being altered by data processing. Only Processed data block can be altered by data processing.
- Replace linear interpolation with cubic spline interpolation for improved fidelity.
- Improved peak analysis precision. Peak position is accurately determined by curve fitting, instead of using the position of the highest pixel.
- In Spectrum List Panel, removed the distinction of "Measured Spectra" and "Open Spectra". Removed file management tools "Rename Selected spectrum", "Save Selected Spectrum", and .
- Established rules for spectral file management in Spectrum List Panel.
 - a. A new spectral file cannot be created until all necessary elements for the last acquired spectrum are complete. For example, in Raman Workspace, a dark spectrum must be present and must be acquired with the same integration time as the signal spectrum.
 - b. A Saved or Finished spectrum can no longer be overwritten by acquiring new data.
- Reorganized Tools Menu and added a new Spectral Function menu. Old Tools menu included both Instrument Utility Tools such as creating calibration references, and spectral processing functions, some of which are automatically applied to new acquisitions in an undefined manner. The new tools menu only includes Instrument Utility Tools. The new Spectral Function menu provides data processing functions that are applied only to selected spectra, not to new acquisitions. The Spectral Function can only be applied to the Processed Data block, and are disabled unless the active Y Axis Type is set to Processed Data. Data processing functions to be applied to new acquisitions are defined in Experiment Setup/ Spectral Professing/ Additional Processing.
- Removed Option menu, which included both Instrument Utility Tools (such as creating calibration references) and spectral processing settings (such as enable/disable various calibrations). Instrument Utility Tools are moved to Tools menu, and spectral processing settings set moved to setups: Experiment Setup for new acquisitions, and Batch Re-Process for saved spectra.
- Added Batch Re-Process function to Spectral Function menu to allow re-processing the data starting from the raw data.
- Timeline Load function Improvement: added Batch Re-Process to allow reprocessing and re-analyzing the data.
- Improved Peak Analysis.
 - a. Peak position is accurately determined by curve fitting, instead of using the position of the highest pixel.
 - b. Removed data source selection. Only the active Y-axis Type of the Selected Spectrum is labeled and reported.
 - c. Added Report Export and Printing function.
 - d. Standardized the parameter name and corrected inconsistencies.
 - e. When Baseline Removal is checked, analysis results is now based on the baseline subtracted

spectrum.

- Hardware Setup
 - a. Removed the option "Close LED Illumination on Data Scan". LED Illumination is always automatically turned off during spectral acquisition including dark scan.
 - b. Replaced the option "Open Laser Before Data Scan, Close Laser After Data Scan" with "Open Laser Before Data Scan".
 - c. Added Laser Timeout in Common Setting to extend laser lifetime. If the laser has been idle in the On state for a period equal to the timeout period, laser will be automatically turned off.
 - d. Added a tab "Probe Setup" to pre-configure probes for the system. Relative Intensity Correction ratio file for Raman application must be configured here for it to be saved in the TXTR file format and applied following data acquisition. Although not mandatory for data acquisition, this is strongly recommended for Raman application.
- Spectral Function/Baseline Removal: changed the Lambda scale bar from linear to logarithmic for improved sensitivity.
- Added integration time units.
- Renamed Irradiance Correction to Irradiance Calibration.
- Removed Dark Compensate from Acquire menu in Raman Workspace.

Notable Bug Fixes

- Baseline Removal: fixed the bug that the result spectrum and the preview did not agree with each other.
- Sawitzky-Golay derivative: fixed the bug that window size (points) had no effect on the results, and even integers were accepted.
- Firmware revision for BTC261P and BTC264P fixed the acquisition and readout delay at shorter integration times.
- In previous versions, when auto time and external trigger are both selected, the trigger only works when it's pressed a second time. This is now fixed.
- i-Raman Pro: modified the warmup behavior. Data can now be acquired during instrument warmup.
- Improved External Trigger Pacing Mode behavior. In some spectrometer models (BTC665N, BTC667N), this mode does not work with very short integration times, because these models are Level Triggered, while the manual trigger typically cannot be released before the current acquisition is finished, causing multiple acquisitions to be done for a single triggering event. Now, a 0.5 second delay is added between acquisitions to give the user enough time to release the trigger.

Known Bugs

• Timeline chart time axis is relative to the time of first spectrum acquisition, not in real time.

- Spectrum cannot be saved with a file name already in use by another one listed in Spectrum List Panel.
- In Spectrum List Panel if a spectrum name is expanded to show the details and it is at the top of the field, clicking the "-" to collapse the field can uncheck all spectra.
- Peak Analysis: peak analysis cannot be performed for TXTR and TXT files when X Axis unit is Wavelength Linear, Wavenumber Linear, or Raman Shift Linear.
- If you have open ANY file of file name "example1", then you take a new spectra, and try to save this spectra with the name "example1" in a DIFFERENT FOLDER LOCATION, you get an error "This Spectra name already be used". This error does NOT appear if trying to open 2 files with the same name from DIFFERENT folder locations.
- The Spectrum List Panel treats an "Unclick" as a click. This means, when you go to expand the details of a spectra, go to click the "+" again, the checkbox for All spectra under the Spectrum List will get unchecked as you "Unclick"
- Calculation for v' is incorrect. This can be tested with the Irradiance Setup
- BTC261P Pixel Mode setup against i-Spec (BWS903). There was a bug which caused only half the spectrum to be read instead of every other pixel.
- 3d Graph Feature; update the dll to be supported by Windows 8/8.1

In addition to the above, **BWSpec v4.11** includes the following changes and fixes:

- Added Manual Peak Area Calculation in Experiment => Peak Monitor Setup
- Additional Scan Run information now can be saved in *.txtr files. Enable this option for each scan under Experiment setup.

Notable Bug Fixes in **BWSpec v4.11**:

- The issue with some computers in setting the TE Cooler temperature for some spectrometers when the computer is setup with the European Number Format has been fixed.
- Pulse Output now properly calculates the total pulse train against the set integration time.
- File conversion from *.txt to *.txtr is now more stable.
- Switching to Japanese language now supports more spectrometer models.
- Loading Experiment Setup is now more reliable with different configurations.

Known Bugs in BWSpec v4.11:

• Enabling BAC151x plug-ins will cause spectrometers with built-in shutters to automatically close the shutter during normal scan. Disable the BAC151x plug-in in order to use these spectrometers.

2 INSTALLATION

3 SUPPORTED OPERATING SYSTEMS

Windows 7 (32 bit & 64 bit) Windows 8 / 8.1 (32 bit & 64 bit) Windows 10 (32 bit & 64 bit)

4 MINIMUM SYSTEM REQUIREMENTS*

Meets or exceeds the System Requirements for your PC's Operating System respectively Processor: 1.5GHz or faster RAM: 1GB or more Hard disk space: 250MB available or more**

* The requirements are for normal use and do not include resource intensive features like Burst Mode

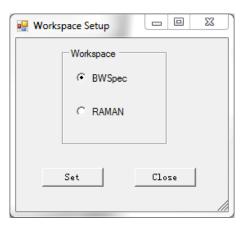
** Excluding additional hard disk space required to store generated data by the application.

5 SOFTWARE & HARDWARE INSTALLATION

- Refer to "BWSpec Software and Hardware Installation Guide" for fully detailed installation instructions:
- Insert the BWSpec 4 USB Flash Drive into the computer's USB port and copy the installation file to local computer.
- Install the software;
- After software installation, **DO NOT** open the BWSpec program;
- Connect the spectrometer to the PC via an USB Cable;
- Install the Hardware Driver(s) for the spectrometer;
- After hardware driver installation, open/run the BWSpec program.
- To get started with a Raman System, go to Section 15.7 Experiment Setup for a walk-through example.

6 RUN BWSPEC

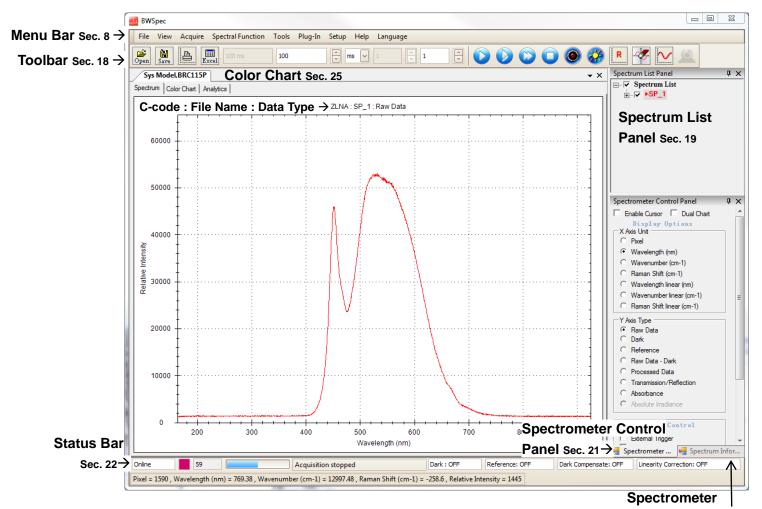
Double click the BWSpec icon on the desktop:



If the User Account Control is active, the following message will appear:

Click Yes to continue.

The **Workspace Setup** window will open, prompting the user to choose a workspace based on their unit and application.



If you are unsure, choose the default **BWSpec** workspace and click **Set**. This option may be changed later within the main program; Setup \rightarrow Workspace.

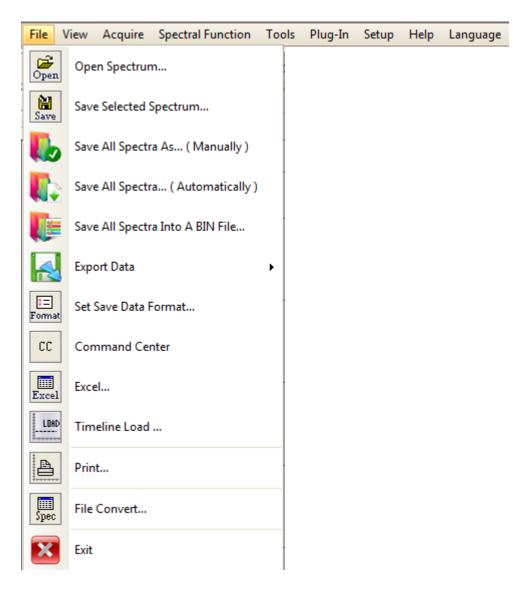
7 MAIN WINDOW

Presented below is a brief visual overview of the BWSpec 4 main window. The main toolbars, panels and tabs are highlighted; refer to the corresponding section for more detailed information.

Information Panel Sec. 20

19 Shea Way, Newark, DE 19713, USA Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

290020235-L (2018/11/29)



8 MENU BAR

File View Acquire Spectral Function Tools Plug-In Setup Help Language

The following sections are detailed descriptions of the dropdown menus available for each menu option in the BWSpec 4 Menu Bar.

9 FILE

19 Shea Way, Newark, DE 19713, USA

Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

9.1 Open Spectrum...

Open Spectrum...

- Load a previously saved spectral file into the main graph.
- Available in the following formats:
- TXT File (*.txt)
- TXTR File (*.txtr)
- CSV File (*.csv)
- SPC File (*.spc)
- Spectral Signature File (*.sig)
- BWSpec Data File (*.BwRam)
- BWSpec Data BIN File (*.BwRamS)

All Files (*.*) TXT File (*.txt) TXTR File (*.txtr) CSV File (*.csv) SPC File (*.spc) Spectral Signature File (*.sig) BWSpec Data File (*.BwRam) BWSpec Data BIN File (*.BwRamS)

• Data from other instruments and software saved in SPC format can also be opened in the BWSpec software.

9.2 Save Selected Spectrum...

- Save Selected Spectrum...
- Save the spectrum selected in the Spectrum List Panel.
- Used to save data of selected spectrum from BWSpec in the following formats:
- *.txt
- *.txtr
- *.csv
- *.txt(Even)
- *.spc
- *.BwRam

9.3 Save All Spectra As...(Manually)

Save All Spectra As... (Manually)

- Save all the spectra listed in the Spectrum List Panel individually
- A new Save Spectrum Data window will open for each spectrum.

9.4 Save All Spectra...(Automatically)

Save All Spectra... (Automatically)

- Save all the spectra in the Spectrum List Panel at once.
- The save name is the name used in the Spectrum List Panel.

9.5 Save All Spectra into a BIN File...

- Save All Spectra Into A BIN File...
- Save all the spectra in the **Spectrum List Panel** into one BIN file with *.BwRamS file extension.

9.6 Export Data

•

Export Data

- Export all spectral data into one text file.
- Set the type of data and format.
- This function needs to be enabled through Plug-In Manager.
- Refer to Section 24.3 for more details.

9.7 Set Save Data Format...

Email Set Save Data Format...

- Configures the default File type when saving spectra.
- Sets the default Export Option for file types *.txt (Even) and *.spc
- Other file types automatically save all data, as seen in the "Save Spectrum" checklist tree.

🖳 Set Save	: Data Format					
Save path	C:\Users\davidb\Documents\BwtekI	Export Option				
File type	▼.SPC	Y Axis	X Axis			
		Raw Data	C Pixel			
			C Wavelength (nm)			
		C Dark	C Wavenumber (cm-1)			
	Set	C Reference	C Raman Shift (cm-1)			
		O Processed Data	C Wavelength (nm) Evenly			
			C Wavenumber (cm-1) Evenly			
		C %T/R	 Raman Shift (cm-1) Evenly 			
		C Absorbance	Start -48237 (cm-1)			
		C Absolute Irradiance	End 1916 (cm-1)			
			Interval 1 (cm-1)			

9.8 Command Center

CC Command Center

- For importing spectral signatures for analysis and exporting Library updates.
- This feature is only for use with the handheld Raman series TacticID.
- Refer to the TacticID User Manuals for more information.

9.9 **Excel**

•

Excel Excel...

- Export the active/selected single spectrum from the **Spectrum List Panel** to an Excel sheet.
- The file will open in Excel when the export is complete.
- Supported in all Excel versions.

9.10 Timeline Load ...

LOAD Timeline Load ...

Print...

- Automatically loads the files that were saved previously in **Timeline**.
- May be used with **Batch Process** to reprocess the data as you load it into BWSpec.
- Load path selects the folder location for the timeline data set.
- The corresponding files are displayed on the Spectrum List Panel.
- Refer to Section 24.12 for more details on Timeline

9.11 Print...

- Opens **Print Preview** window with the displayed data and header information.
- The user can make changes and add a watermark.
- Options to print, export document, or send as an e-mail.

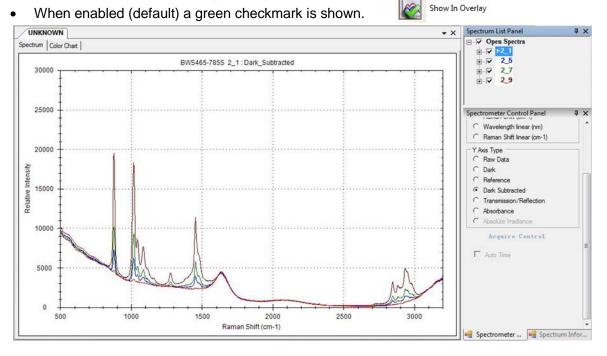
9.12 File Convert...

- Spec File Convert...
- Convert all spectral files of the same format under a selected folder into another format.
- Convert BWSpec4 *.txt files to BWSpec4 *.txtr file type.
- Must use the appropriate Ratio files for the conversion to have the corrections applied.
- Any processing done in the *.txt file will not be recorded in Pretreat section.
- Convert BWSpec4 *.txtr files to BWSpec 4 *.txt file type.
 Convert BWSpec3 data files which may contain multiple spectra (up to 3) into individual BWSpec4 compatible files.

9.13 *Exit*

Exit

- Closes the BWSpec program.
- You will be prompted to save any unsaved or modified spectra.


10VIEW	File	View	Acquire	Spectral Function	Tools	Plug-In	Setup	Help	Language
			Show In	Show In Overlay					
		\approx	Show In	Sequence					
		A	Clear Al	l Spectral Data F11					
		\sim	Display	Scales					
		3	Custom	Setting	•				
		2	Spectru	m List Panel					
		2	Spectru	m Info Panel					
		V	Spectron	meter Control Panel					

10.1 Show In Overlay

Show In Overlay

• When viewing more than one spectrum, an overlay of each spectrum in the **Spectrum List Panel** will be displayed in the main graph.

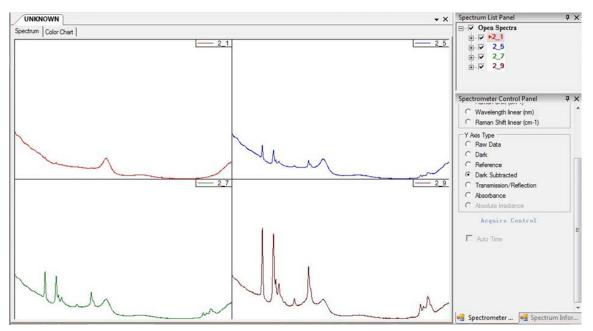
19 Shea Way, Newark, DE 19713, USA

Page 13 of 108

Tel: +1 (302) 368-7824

Web: www.bwtek.com

Fax: +1 (302) 368-7830



10.2 Show In Sequence

- Show In Sequence
- When viewing multiple spectra, individual graphs will appear in the order they are listed in the **Spectrum List Panel**.
- When enabled, a green checkmark is shown.

Show in Overlay and Show in Sequence are mutually exclusive options.

10.3 Clear All Spectral Data...

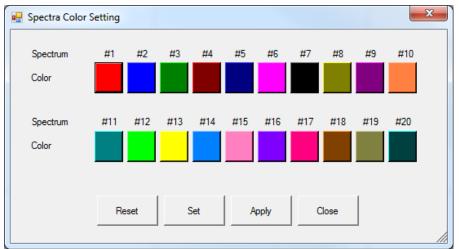
• Remove all spectra from the **Spectrum List Panel**.

10.4 Display Scales...

/ Display Scales...

- The **Display Scales Setting** window shows the graphing window's X-axis and Y-axis settings.
- X-axis scale settings are based on the default calibration settings for the spectrometer.
- Using Automatic Scales will auto-adjust the graph and axis to fit the current displayed data.
- While using **Manual** Scales, the **X-axis** may be changed by typing in a **Minimum** and **Maximum** into the boxes, or by moving the slider for the **Left Position** and **Right Position**.
- Check the X-axis Apply for All Spectra to apply changed settings to all spectra in the Spectrum List Panel.
- Click the **Set** button to apply the selections to the graph. In the **X-axis**, the selection will be applied to the nearest pixel.
- The Raman Excitation Laser Wavelength is for Raman only. **Do not adjust this value.** This will change the Raman Shift calculation.

C Automatic (• Manual	C Automatic Manual
 Pixel Wavelength (nm) Raman Shift (cm-1) 	Minimum 63.16 (cm-1) Maximum 3230.70 (cm-1)	Minimum 0 Maximum 65535
Left Position Right Position X-axis Apply for All Spectra	J	


10.5 Custom Setting

Display settings for the main graph window.

• Spectra Color Setting...

• Opens a **Spectra Color Settings** window where the spectrum color order for overlays can be set / adjusted. The sequence is based on spectra listed in the spectrum list panel.

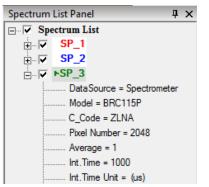
• Spectra Graph Setting...

 Opens a Graph Setting window where the variables relating to the graph window display can be set and adjusted to create a customized graph.

🖳 Graph Setting				X
Spectra Name	Position Backgrou	Inside Top Ri	ght	•
Graph Background Color		Graph Backg	round Color	
Grid Display Vertical Grid		✓ Disp	lay Horizontal Grid	
Font Bold		Font Size	12	÷
Line		Line Width	1	÷
Reset	Set	Apply	Cancel	

19 Shea Way, Newark, DE 19713, USA

Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830


Web: www.bwtek.com

10.6 Spectrum List Panel

Spectrum List Panel

- Toggles On/Off display of the Spectrum List Panel on the right side of the display.
- Spectrum with the arrow period next to the name is the "active" spectrum and the current data is overwritten if additional spectra are taken.
- After an Overlay spectrum is taken, the previous spectrum cannot be modified. For example, after SP_3 is taken, SP_1 and SP_2 cannot be modified.
- Expanding the + will give information on the spectrometer and settings used to collect the spectrum.
 Spectrum List Panel
- When enabled (default) a green checkmark is shown.
- Refer to Section 19 for more details.

10.7 Spectrum Information Panel

Spectrum Info Panel

- Toggles On/Off display of the **Spectrum Information Panel**.
- Displays spectrum details including spectrometer and laser information.
- Any processing steps used are listed in the **Pretreat_#** section
- When enabled (default) a green checkmark is shown.

• Refer to Section 20 for more details.

Spectrum Informa	tion Panel	д	×
Name	SP_3		•
DataSource	Spectrometer		П
Model	BRC115P		
CCode	ZLNA		
PixelNumber	2048		
Average	1		
Integration Time	1000		
Integration Time U	(us)		
TimeMultiply	1		
LaserWavelength	785		
LaserLevel	0		
ProbeName	Probe1		
HadTakeRaw	True		
HadTakeDark	False		
HadTakeReferen	False		
HadDarkCompen	False		
Pretreat_0			
Pretreat_1			
Pretreat_2			

19 Shea Way, Newark, DE 19713, USA

Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

10.8 Spectrometer Control Panel

.

Spectrometer Control Panel

- Toggles On/Off viewing of the Spectrometer Control Panel.
- The availability of the listed options depends on the Workspace selected.

Spectrometer Control Panel

- When enabled (default) a green checkmark is shown.
- Refer to Section 21 for more details.

pectrometer Control Panel	ų ×
Enable Cursor 🔲 Dual Chart	-
Display Options	
X Axis Unit	
C Pixel	
Wavelength (nm)	
C Wavenumber (cm-1)	
C Raman Shift (cm-1)	
C Wavelength linear (nm)	
C Raman Shift linear (cm-1)	=
Y Axis Type	
Raw Data	
C Dark	
C Reference	
C Dark Subtracted	
C Transmission/Reflection	
C Absorbance	
C Absolute Irradiance	
Acquire Control	
External Trigger	
Auto Time	
Spectrometer Control Pa 🖷 Spectrum	Information P

11ACQUIRE

File	View	Acquire	Spectral Function	Tools	Plug-In	Setup	Help	Language
			Acquire One Spectru	m F5				
			Acquire Overlay F10					
			Acquire Continuousl	y F6				
		0	Stop F7					
		۲	Acquire Dark F8					
		\$	Acquire Reference	9				
		\mathbf{x}	Dark Compensate En	able/Dis	able			

11.1 Acquire One Spectrum

- Acquire One Spectrum F5
- Acquires a single spectrum from the spectrometer and displays it on the graph.
- The data is viewable on the Raw Data Y Axis Type.

11.2 Acquire Overlay

- Acquire Overlay F10
- Acquires a single spectrum and displays it over top of the previously displayed spectra.
- Note that the previously taken spectra can no longer be edited.
- The data is viewable on the Raw Data Y Axis Type.

11.3 Acquire Continuously

- Acquire Continuously F6
- Data is continuously displayed in the graph from the spectrometer with no delay between scans. The data is viewable on the **Raw Data Y Axis Type.**

11.4 **Stop**

- C Stop F7
- Stops acquisition while using Acquire Continuously.

11.5 Acquire Dark

- Acquire Dark F8
- Acquires a single spectrum which is stored as the **Dark** array.
- The Dark array is viewable in the **Dark Y Axis Type**.

11.6 Acquire Reference

- Acquire Reference F9
- Acquires a single spectrum which is stored as the **Reference** array.
- The Reference array is viewable in the Reference Y Axis Type.

11.7 Dark Compensate Enable/Disable

Dark Compensate Enable/Disable

- The **Dark Compensate** feature provides an electronic dark reference array that is available with select spectrometers.
- This is a close approximation to the average level of a true dark spectrum, but does not contain the pixel to pixel variations,
- When applied, the **Dark** array is subtracted from acquired spectra (**Raw Data**).
- The applied Dark Compensate is viewable in the Dark Subtracted (Processed) Y Axis Type.
- This function is ideal for conditions where dark subtract is inconvenient to use (long integration times or during constant exposure conditions).
- Dark Subtract and Dark Compensate are mutually exclusive. If a Dark array is used, Dark Compensate will not be applied.

Dark Compensate Enable/Disable

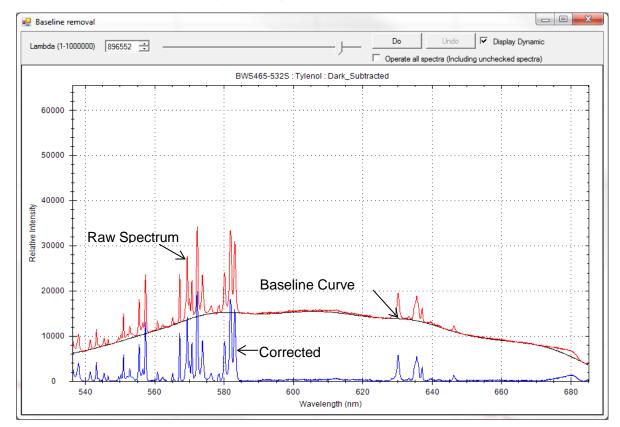
- Dark Compensate is not available in Raman Workspace.
- When enabled, a green checkmark is shown.

11.8 Acquisition Tips

- The "active" spectrum will have the current data overwritten if additional spectra are taken.
- A **Dark Spectrum** is used to subtract the contribution (dark noise) of the sensor itself. This is carried over until a new dark spectrum is acquired.
- A measured spectrum is unfinished when it is just acquired. It becomes Finished after it is saved to a disc, or after a new spectrum is measured.
- To ensure data integrity, BWSpec prevents the measurement of a new spectrum when the last measured spectrum is unfinished, such as, when in Raman Workspace, the integration time of the signal and the dark spectrum are not the same. If you are unsure if the raw and dark integration times same, attempt an Acquire Overlay. If they have different integration times, BWSpec will alert the user that the integration time of the raw and dark do not match.
- Use the **Auto Dark** feature in Hardware Setup → Common to take a Dark scan after each Acquisition.
- If the last **Measured Spectrum** is unfinished and is selected, it can be overwritten by a new measurement. No other spectrum can be overwritten by a new measurement except a new spectrum.

12 SPECTRAL FUNCTION

File	View	Acquire	Spectra	I Function	Tools	Plug	j-In	Setup	Help	Language
			8	Baseline R	emoval					
			pm	Smoothin	g					
			\approx	Derivative						
				Peak Analy	/sis					
			BP	Batch Re-F	rocess					
			<u>∔</u> ÷ ×–	Spectra M	ath	•				


- The default items in the Spectral Function menu are Smoothing, Derivative, Peak Analysis, and Batch Re-Process. Background Removal and Spectra Math will become visible in the menu after being enabled in the Plug-In Manager.
- These functions work on all spectra Checked in the **Spectrum List Panel**.
- Since the **Raw Data**, **Dark**, and **Reference** data are protected, functions that alter the data are disabled if the active **Y Axis Type** is set to one of these types. **Peak Analysis** does not alter the data and is enabled on these **Y Axis Types**.

12.1 Baseline Removal...

Baseline Removal...

- The **Baseline Removal** function is used to perform baseline correction.
- This function is disabled when the Y Axis Type is set to Raw Data, Dark, or Reference.
- A preview window with three spectra will be displayed: raw spectrum (red), automatically fitted baseline curve (black), and the spectrum after background removal (blue). The color of the raw spectrum reflects its color in the **Spectrum List Panel**.
- The lambda factor can be adjusted by moving the slider bar at the top, or by typing in the **Lambda** box. This manipulates the auto fitted background to achieve the desired baseline removal result. Click **Do** to apply changes to the main graph.

• Enable this function in the **Plug-In Manager**.

19 Shea Way, Newark, DE 19713, USA Tel

Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

12.2 **Smoothing...**

M Smoothing...

- Opens a **Smoothing** window for applying smoothing processing to all Checked spectra.
- This function is disabled when the Y Axis Type is set to Raw Data, Dark, or Reference.

• FFT (Fast Fourier Transform)

- **FFT Smoothing** can be applied to the original spectrum using a smoothing factor of 1-99%.
- The smoothing factor needs to be carefully selected so as not to cause a distorted spectrum.

Savitzky-Golay Smoothing

- **Savitzky-Golay Smoothing** can be applied to the original spectrum with a window size setting from 2-5.
- This is a commonly used smoothing method with less chance to cause distortion and degradation to the spectral resolution. A higher window size causes a greater degradation to resolution.

• Boxcar Smoothing

- **Boxcar Smoothing** can be applied to the original spectrum using a "window size" setting from 1-1023.
- The smoothing function will apply the forward moving smoothing by taking the average of the specified number of pixels plus one pixel to the left of the group and one pixel to the right of the group.
- This is an effective smoothing operation that comes at the expense of degraded spectral resolution; hence, do not use a larger than necessary window size setting in order to preserve the needed spectral information.

12.3 Derivative...

Derivative...

- Opens a **Derivative** window for applying derivatives to all displayed spectra.
- This function is disabled when the **Y** Axis Type is set to Raw Data, Dark, or Reference.
- **Point Diff:** This computes the first derivative of the spectrum by the difference in the y response between two points on the x-axis.
- Savitzky-Golay: the user can choose the derivative order, the degree (of the polynomial fit), and the number of points over which to compute the derivative;
- **Differential:** the user can set the point interval to use from 5 to 20.

🖶 Derivative	
Derivative Type Point Diff	
C Savitzky-Golay	
Derivative Degree Points	1st ▼ 2 ÷
O Differential Points Interval	16 🕂
Do	Undo

12.4 Peak Analysis...

Peak Analysis...

- Information on peaks in the spectrum can be shown live in the software's display window.
- Automatic Peak Identification; Peak position is accurately determined by curve fitting, instead of using the position of the highest pixel.
- In the top left-hand corner of the menu, input the value at **Minimum Absolute Peak Height** (threshold) and the **Minimum Peak Width**. All identified peaks are listed in the table.
- This table provides detailed information on the identified peaks.
- When **Baseline Removal** is checked, analysis results are based on the baseline subtracted spectrum. The Baseline corrected spectrum does not display or get applied
- Check the box for **Display Peak In Graph** and the identified peaks will be marked on the spectrum. Select the information to display in graph by checking the desired items.
- Peaks may be added by checking **Add or modify a peak manually**. Then go to the main graph and click and drag a box over the peak of interest.
- Select the **Report Export** button in to export table to an Excel sheet.
- Select the **Print** button to print a **Peak Analysis Report**, containing spectrometer information, the graph, and table.
- Select the **Peak Field Setup** in **Print Report** button is to change the field and to adjust the number of fields available in the Print Table.

D		ns ed (Processed) plute Peak Heigh	t 3000 ÷	Display	ak In Graph Peak X Value Peak Y Value Peak Resolution	[[(cm-1)	Display Peak Display Peak	: Area Fill : Start and End			
	Baseline R Display Mo	Width (Point) emoval Lambd re Peak Infomati dify a peak manu	on		Peak Resolution Peak Resolution	• •					
	Peak Index	Pixel Top	Raman Shift Top (cm-1)	Absolute Height	Height	FWHM (cm-1)	Width (cm-1)	Wavelength Top (nm)	FWHM (nm)	FWHM (pixel)	Γ
	1	16.418	-3.079	25116.531	23056.813	7.559	39.477	784.760	0.466	3.063	
	2	53.500	87.685	65931.625	49885.625	48.358	89.661	790.390	3.030	19.986	
	3	78.541	148.137	39340.823	4796.495	13.499	43.090	794.185	0.852	5.627	1
	4	105.630	212.784	29680.146	16035.815	17.614	71.062	798.283	1.123	7.426	1
	5	126.174	261.299	10104.308	255.517	6.725	16.447	801.387	0.432	2.861	1
	5						1				1
	6	131.875	274.683	9514.063	33.396	4.631	7.033	802.248	0.298	1.975	

12.5 Batch Re-Process

BP Batch Re-Process...

- Similar to Experiment Setup, but used to re-process spectra checked in the Spectrum List Panel.
- This function is different from other Spectral Functions in that it starts with the Raw Data blocks (Raw and Dark in the file) of each spectrum. Each Checked spectrum is processed according to the steps specified, and the results are saved in the corresponding Processed Data block (called Dark Subtracted in the file). All other Spectral Functions start with the Processed Data block of each spectrum, performs the chosen function, and saves the results.

For example, if a Spectrum has previously been intensity corrected and smoothed, performing Spectral Function/Derivative on it will produce Processed Data that is intensity corrected, smoothed and then differentiated, while performing Batch Re-Process with "Enable Relative Intensity Correction" unchecked, and a derivative step defined in Spectral Processing/Additional will produce a Processed Data that is differentiated on the Raw Data. These are reflected in the Pretreat sequence viewable in the **Spectrum Information Panel**.

- Because different file types contain different data, it is impossible to apply one set of Re-Process steps to a set of Checked Spectra of mixed formats. So, if different file formats are selected, upon clicking "Batch Re-Process", a warning message will display: "Selected Spectra are of different file formats. Please select spectra of the same format."
- Spectral Processing includes both Instrumental Correction (found in Tools menu) and other spectral math functions. Some or all instrumental correction may be disabled due to file format.

- If Checked Spectra are Measured spectra; when an Instrumental Correction requiring a ratio file is selected, the user must choose a Ratio file from disc.
- If Checked Spectra are Opened Spectra of TXTR format, then all Instrumental Corrections are allowed, and if an Instrumental Correction requiring a ratio file is selected, the ratio data stored in each spectrum will be used to process the corresponding spectrum.
- If Checked Spectra are Opened Spectra of TXT format, which does not have the ratio spectrum within, then all Instrumental Corrections are allowed, and if an Instrumental Correction requiring a ratio file is selected, the user must choose a Ratio file from disc.
- If Checked Spectra are Opened Spectra of SPC (*.spc) format, which does not have the raw data, then all Instrumental Corrections are disabled. Processed data will overwrite existing data.
- Analytics Settings may be imported from a currently loaded Experiment Setup configuration file using the **Copy From Experiment** button.
- The Re-Processed data may be automatically saved if **Save Processed Spectra** is checked.
- Click "Do" to execute the Batch Re-process, "Undo" to restore the original data. In case the Save Processed Spectra is checked, "undo" will also delete the files saved from the disc.
- Refer to Experiment Setup in Section 15.7 for details on processing features and a walk-through.

🖳 Batch R	Re-Process
	New Config Load Config Save Config
Current	Config File:
Spectra	al Processing
	Enable Linearity Correction
Sele	ct Correction Relative Intensity Correction
	Enable Relative Intensity Correction
	Ratio File
	Additional Processing Copy From Experiment
Analytic	38
	Peak Monitor Copy From Experiment
	Chemometrics
Save P	Processed Spectra
	Save Processed Spectra
Path	: C:\Users\davidb\Documents\BwtekData
Add	Prefix: Processed
	Do

12.6 Spectra Math

One Spectrum Math					
Two Spectra Math					
Spectra Normalize to Constant Value					
Spectra Normalize by Total Integration Time					
Spectra Normalize by Unit Vector					

Spectra math contains the following options:

- One Spectrum Math
- Two Spectra Math
- Spectra Normalize to Constant Value
- Spectra Normalize by Total Integration Time
- Spectra Normalize by Unit Vector
- Enable this function in the **Plug-In Manager**. Refer to Section 24.10 for more details.

19 Shea Way, Newark, DE 19713, USA Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

Page 27 of 108

13 TOOLS

File	View	Acquire	Spectral Function	Tools	Plug-In	Setup	Help	Language
				<u>^'c</u>	Irradiance	Correct	tion	
				1	Linearity	Correcti	on	
				M	Performa	nce Test	t	
				PR	Ramansh	ift Calib	ration	
				P/c	Reference	e Materia	al Corre	ction
				₽ /c	Relative In	ntensity	Correct	ion
				M	System R	esponse	Standa	rdization
				P.	Waveleng	gth Calib	oration	

- This menu provides a set of instrument utility tools after being selected as Plug-Ins from the **Plug-In Manager**. Refer to Section 14.
- Please note that Linearity Correction, Raman Shift Calibration, System Response Standardization, and Wavelength Calibration are Factory functions and their results can only be written to the instrument's flash memory.
- Irradiance Calibration: Refer to Section 24.4
- Linearity Correction: Refer to Section 24.5
- **Performance Test:** For Raman instruments; provides a procedure for testing accuracy and repeatability of the hardware. Refer to Section 24.6
- Raman Shift Calibration: Refer to Section 24.7
- **Reference Material Correction:** Refer to Section 24.8
- Relative Intensity Correction: Refer to Section 24.9
- System Response Standardization: Refer to Section 24.11
- Wavelength Calibration: Refer to Section 24.13

14 PLUG-IN

File	View	Acquire	Spectral Function	Tools	Plug-In	Setup	Help	Language
					3	Plug-in I	Manage	r

14.1 Plug-In Manager...

- Opens the **Plug-In Manager** window, listing all the available software Plug-Ins.
- Check the box next to a given Plug-In to activate it. Click **Apply** and then **OK** to activate the Plug-In in the BWSpec Menu Bar. The Plug-Ins will be added to the appropriate menu on the BWSpec Menu Bar.
- Refer to Section 24: Plug-In Manager for additional information about specific Plug-Ins.

Name	Assembly	Descriptioin
Baseline Removal Plug-in	BwRam.PlugIn.BaselineRemove.dll	Baseline Removal Plug-in
BAC151B Camera Plug-in	BwRam.PlugIn.CameraBAC151B.dll	BAC151B Camera Plug-in
BAC151A Camera Plug-in	BwRam.PlugIn.CameraBAC15X.dll	BAC151A Camera Plug-in
🗌 Export Data Plug-in	BwRam.PlugIn.ExportData.dll	Export Data Plug-in
Irradiance Correction Plug-in	BwRam.PlugIn.IrradianceCorrection.dll	Irradiance Calibration Plug-in
Linearity Correction Plug-in	BwRam.PlugIn.LinearityCorrection.dll	Linearity Correction Plug-in
Performance Test	BwRam.PlugIn.PerformanceTest.dll	Performance Test
Ramanshift Calibration Plug-in	BwRam.PlugIn.RamanshiftCalibration.dll	Ramanshift Calibration Plug-in
Reference Material Correction Plug-in	BwRam.PlugIn.ReferenceMaterialCorrection.dll	Reference Material Correction Plug-in
Relative Intensity Correction Plug-in	BwRam.PlugIn.RelativeIntensityCorrection.dll	Relative Intensity Correction Plug-in
Spectra Math Plug-in	BwRam.PlugIn.SpectraMath.dll	Spectra Math Plug-in
System Response Standardization Plug-in	BwRam.PlugIn.SystemResponseStandardization.dll	System Response Standardization Plug
System Test Plug-in	BwRam.PlugIn.SystemTest.dll	System Test Plug-in
Timeline Plug-in	BwRam.PlugIn.TimeLine.dll	Timeline Plug-in
Wavelength Calibration Plug-in	BwRam.PlugIn.WavelengthCalibration.dll	Wavelength Calibration Plug-in
< [•
0		1

19 Shea Way, Newark, DE 19713, USA

Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

15 SETUP

File	View	Acquire	Spectral Function	Tools	Plug-In	Setup	Help	Language	
						3	Works	pace	
						3	Flash	Access	
							Spectr	ometer Info	
						AUX ()	Hardw	vare Setup	
						Ó	BAC15	51A Camera	•
						Ó	BAC15	51B Camera	•
						COLOR	Color	Setup	
						<u> </u>	Experi	ment Setup	
						USB Reset	USB3	Spectrometer Re	set

15.1 Workspace

•

Workspace...

- The Workspace Setup window allows switching between the BWSpec and Raman workspaces.
- The Raman Workspace has configurations and rules tailored for Raman applications in the Spectrometer Control Panel.

15.2 Flash Access...

- •
- The Flash Access window provides unique information pertaining to the defaults and settings of the spectrometer.
- Clicking the **Read Flash** button reads the spectrometer's EEPROM (device memory) and resets the BWSpec variables back to their default factory values, including: wavelength calibration, display scales, and linearity correction.

VID_and_PID	16a3-2ed8		
Title	Title	Manufacture Date	10/2012
Model	BRC115P	System Model	Sys Model
C_Code	ZLNA	System Code	Sys C.Code
BWSpec Version	4.03_35	Hardware Code	M115PR11
Number Of Pixel	2048	Mininum Integrate Time (us)	1000
Start Pixel	0	Timing Mode	1
End Pixel	2047	Input Mode	1
X-axis Reverse	0	Y-axis Reverse	0
Coefficient_A[0]	163.318789060082	Coefficient_B[0]	-418.521073080723
Coefficient_A[1]	0.397059546385505	Coefficient_B[1]	2.58748626814755
Coefficient_A[2]	-1.9605627104614E-06	Coefficient_B[2]	-0.000238374722994991
Coefficient_A[3]	-5.05184338310112E-09	Coefficient_B[3]	3.49561600380178E-07

15.3 Spectrometer Info...

- Spectrometer Info...
- Opens a Spectrometer Info window which displays details of the spectrometer for the selected spectrum:
- Additional information can be input by the user for tracking purposes when printing/saving data.

🖳 Spectrometer Info 🛛 💽					
Graph Title	BWS485-1064S-05				
Operator					
System Model	BTC264P_512				
Serial Number					
Unit Model	BTC264P_512				
Unit CCode	ОКМ				
Set	Cancel				

19 Shea Way, Newark, DE 19713, USA Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

290020235-L (2018/11/29)

Page 31 of 108

15.4 Hardware Setup

Hardware Setup...

- This menu is active only when the BWSpec software is communicating with an instrument.
- Opens a **Hardware Setup** window which displays additional settings including Probe Setup and Auxiliary Port Control.
- Refer to section 23 for further details.

15.5 BAC151x Camera

- Turns on the BAC151x camera
- BWSpec v4.11+ supports BAC151A rev A, BAC151A rev C and BAC151B.
- Refer to the BAC151x User Manual for details on installation and use.

15.6 Color Setup...

- Opens a Color Measure Setup window.
- This feature is to be used with color measuring systems.
- Refer to Section 25: Color Measurement for more details.

neierence ci	olor Setting		Color Stand	ard
-	a b 0 0 /alue as Setting		Illuminant Observer	D65 2 degree
Wavelength f	or Color Calcula	tion	Color Calcu	lation Source
Radiant Unit	mW/nm	•	Color Calcu	ation Source % T/R 👻
Distance:	10	(cm)		
	-	(nm)		
Start WL	526	factory.		
Start WL End WL	526 983	(nm)		

19 Shea Way, Newark, DE 19713, USA T

Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

15.7 Experiment Setup

Experiment Setup

____Т

- Allows the user to create and save a set of parameters to define what and how to measure. This includes Acquisition, Spectral Processing, Analytics, and Timeline.
- Load Config load a previously saved Experiment Setup.
- Save Config saves the current Experiment Setup. Changes made to the current setup are lost unless they are saved.
- Current Config. File is highlighted yellow if any change is made and has not been saved.
- Changes made to the parameters are applied when the new configuration is saved; the acquisition parameters shown in other places will change accordingly.
- These Spectral Processing and Analytics are applied to Dark Subtracted (Processed) Data.
- Experiment Setup as viewed from the Raman Workspace:

🖳 Experiment S	Setup	
Load Config	g Save Config	
Current Config Fi	le: C:\BWTEK\BWSpec\AnalyticalConfig\iRaman Pro ST-timeline.cfg	
Acquisition —		
Probe	Probe_SFN_161205953	
Integration Ti	me 1 sec 💌	
Average Nun	nber 1	
Laser Power	(%) 100	
Select Corre	ection Relative Intensity Correction	
	Enable Relative Intensity Correction	
	Additional Processing	
Analytics		
	Peak Monitor	
	Chemometrics	
Timeline		
	Timeline	
	Close	
		//

- Acquisition:
- Define the settings the instrument will use in each acquisition; including integration time and number of averages used for all instruments, also the laser power and probe used for Raman.
- Allows for easy selection of probes from a list of probes pre-configured in Setup=> Hardware Setup=> Probe Setup.
- For Raman instruments, a **Probe** must first be enabled/selected to enable Spectral Processing. Refer to section 23.3 for more information on Probe Setup.

• Spectral Processing:

- To perform predefined data processing
- Options for intensity correction including: Linearity Correction, Irradiance Calibration, Reference Material Correction, and Relative Intensity Correction.
- Relative Intensity Correction is the only option available in the Raman workspace.
- When Dark Subtraction or Dark Compensation is enabled, it is performed prior to any Spectral Professing listed here.
- Irradiance Calibration and Reference Material Correction require a ratio file created by the factory. Relative Intensity Correction also requires a ratio file, but it is defined in Hardware Setup/ Probe Setup.
- Dark Subtraction should be used with Raman instruments; Relative Intensity Correction cannot be applied unless Dark Subtraction is done first.
- Additional Processing allows for multiple post processing steps to be applied after the intensity correction. This includes Baseline Removal, Smoothing, and Derivative. These functions are also available in Spectral Functions for post-measurement processing; refer to Section 12 for more details.

• Analytics

- This menu provides spectral analysis functions to be performed on the Processed Data block.
- The results are displayed in the Analytics tab which appears on the main form.
- The Peak Monitor allows the user to perform peak analysis on automatically defined peaks, and do arithmetic on the analysis results
- To define Measurements variables, select Basic Measurements or Derived Measurements.

• Basic Measurements...

• Define the peaks property values

leasurements Select	Basic Measurements Name	Index	Basic Measurement		
	Basic M_1		Name:	Basic M_1	
Basic Measurements			Index	0	
C Derived Measurements			Type:	Peak Top (Wavelength)	•
			Const	0	
			Source:	Processed Data	~
			Select Position:	Pixel	•
			Start Pixel	650	
			End Pixel	800	
				Update Delete	
	New				

- Press the New button to add a new Measurement variable.
- The Name is to distinguish this measurement; this will be the title in Analytics.
- The Index will start at 0 and automatically increase for each additional measurement.
- The **Type** defines which peak parameter is being measured; Refer to Appendix B for a description and visual representation of Peak Property Values. Note BWSpec workspace shows all types available, while Raman only focuses on Raman specific types.
- The **Source** is always Dark Subtracted (Processed Data) in Raman workspace. You can also select %T/R, Absorbance, or Absolute Irradiance in BWSpec workspace
- Select Position specifies the x-axis unit used to select the peak; Pixel, Wavelength, or Raman Shift.
- Start and End the highest peak found within the range defined by these two values will be taken as the peak.
- **Delete**: press this to delete the selected variable. A variable cannot be deleted if it is used to define one or more Derived Measurements. All such Derived Measurement variables must be deleted first.
- After the Experiment Setup is saved, the Analytics tab will appear in the top left of the main graph, where the measurements are displayed in a table.

Sys Model, BKC115P						
Spectrum	Analytics					
Data Source	Point	Time (sec)				

- Derived Measurements...
- Define measurement variables that are derived from the Basic Measurements. Press the New button to add a new Measurement.
- The Name to identify this measurement; this name will be the title in Analytics.
- The Index will start at 0 and automatically increase for each additional measurement.
- The **Operation** defines the type of math operation to be applied using Measurement A and/or B.
- The **Measurement Type** is chosen between Constant, Basic Measurement and Derived Measurement.
- For example, to measure the peak height ratio of peak A and Peak B, first define two Basic Measurement variables representing heights of peak A and B, then define a Derived Measurement variable as A/B.
- <u>Chemometrics Analytics</u> are currently unavailable and the option is greyed out.
- Timeline
- To perform kinetic measurements and analysis.
- Enable this function in the Plug-In Manager.
- The Timeline function provides automated, timed recording of acquired spectra within the scheduled time interval parameters set by the user.
- These spectra are then saved into individual files and are displayed individually in the main graph.
- If Dark and Reference spectra are taken before beginning timeline, they will be added to all additional timeline created spectra.
- Enter settings, including interval time (the delay time between each spectral acquisition), number of scans, file name suffix and/or file name prefix, data format for saved files and save path.
- The spectra collected will be saved in the designated path. If no specific suffix is assigned, a default of _1, _2, _3, etc. will be assigned to each spectrum.
- Refer to Section 24.12 for more details.

meline Setup	
	Display Spectrum Overlay
Save path C:\Users\davidb\D	locuments\BwtekData
Delay time between spectra (ms)	100 🗧 File Name Prefix data_
Total # of spectra to collect	10 - File Name Suffix
External Trigger	File type TXTR (v201
Start Mode The Immediate	e C On Timer
Output Timeline Data to Spread	idsheet
Cutput Timeline Data to Sprea	dsheet (Include Sum,Ave, STDEV, RMS)
Set	Close

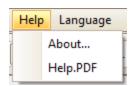
15.8 Raman Instrument Experiment Example:

- Find and measure multiple peaks using Probe and Relative Intensity correction and additional processing.
- We are going to open Hardware Setup and setup the Probe information with the Relative intensity Correction Ratio file. Then we use that information in Experiment Setup and create an experiment to measure a Tylenol Tablet, apply baseline correction and smoothing, and find and measure a specific peak over time.
- Probe Setup
- Navigate to Setup => Hardware Setup and select the **Probe Setup** tab.
- Click the **New** button, and Probe Setup will appear.
- Enter an unique name for the probe, we recommend Probe_[Serial number of probe]_[Ccode of unit]; for example: Probe_160216952_RJX. This allows for a simple way to pair probes to instruments, especially if you have multiple probes.
- Select the radio button Select Ratio at Hard Drive and click the ... button.
- Locate the Ratio3_[Ccode of unit].txt file, provided for you on the B&W Tek flash drive; for example; Ratio3_RJX.txt.
- The Ratio3 information will now be displayed, Click Done.
- Experiment Setup: Acquisition
- Navigate to Setup => Experiment Setup
- Under the Acquisition Section, in **Probe**, select the newly created Probe Profile; Probe_160216952_RJX.
- Select an **Integration Time** and unit suitable for your substance. You can determine optimal integration times by collecting data in the main window that gives the best spectrum for your sample; where the peaks of interest are at about 50,000 counts.
- Select an **Average Number**, 1 is typical, but more may be needed if you have longer integration times or low Signal to Noise Ratio (too much noise).
- Select a Laser Power % to use; 100% is good for white or light colored samples. Colored samples may use 60% and Dark colored samples may use 10-20% or lower. If you burn the sample, use a lower laser power and a longer integration time.
- Experiment Setup: Spectral Processing
- Under the Spectral Processing Section, Select the Correction Relative Intensity Correction.
- Check the box next to Enable Relative Intensity Correction.
- Check the box next to **Additional Processing**, and then click the button to open the Post Processing Setup window.
- Click New to add a Data Process. In our example we are going to do smoothing,
- Under Name we type in Smoothing, in Type we select Smooth, and under Smoothing Type we select Savitzky-Golay Smoothing with a window size of 2. Then click the Done button to add this

Data Processing. Click **Close** to exit the window.

- Experiment Setup: Analytics
- Check the box next to **Peak Monitor**, and then click the button to open the Peak Monitor Setup window.
- Click **New** to add a Basic Measurement. In our example we are going to measure the Tylenol peak height above the baseline at ~1324 Raman shift
- Under Name we type in Peak 1324, in Type we select Peak Height, and under Select Position we select RamanShift with a Start and End of 1314 and 1334 respectively. Then click the Done button to add this to Basic Measurements. Click Close to exit the window.
- Experiment Setup: Timeline
- Check the box next to **Timeline**, and then click the button to open the Timeline Setup window.
- Check the box Display Spectrum Overlay to have all the timeline acquisitions display in the main graph.
- Click the ... to select a save location for the new data.
- Select the **Delay time between spectra (ms)**, in this example we select **0**.
- Select the Total # of spectra to collect, in this example we select 12.
- Click **Set** to accept the Timeline settings.
- Experiment Setup
- Click the **Save Config** button and save the experiment setup configuration to a .cfg file.
- Click the **Close** button at the bottom to close the Experiment Setup window. The main graph will adjust and display a dual chart for timeline, along with the Timeline Acquisition button and Analytics tab.
- Using the Experiment
- Click the Timeline Acquisition button () to begin taking data.
- The top graph will display each spectrum as an overlay.
- The bottom graph will display the Peak Monitoring (Peak Height in this case) as a function of time. To toggle different peaks, go to the Peak Monitor Panel at the bottom right and select the peak from the dropdown menu to activate the Measurement.
- At the top of the main graph the Analytics tab will record the Peak Height for each scan.
- To exit Timeline mode, go back to Experiment Setup and uncheck the Timeline box. Alternatively, you can go to Setup > Flash Access > Read Flash.

Peak Monitor Panel 4 >					
Select Monitoring Measurements					
Measurement 1	450 peak 💌				
Measurement 2	450 peak				
Measurement 3	•				
Measurement 4	•				
Measurement 5	•				
Measurement 6	•				


15.9 **USB Reset**

		١.
		L

USB3 Spectrometer Reset

- This button is only available for USB 3.0 units such as the Exemplar series, i-Raman Plus, and i-Raman Pro.
- Performs a "Hardware reset" of the USB connection. This is functionally the same as unplugging and plugging back in the USB cable.

16 HELP

- About...
- The About window provides B&W Tek. contact information
- BWSpec software version number.
- Help.PDF
- Opens the BWSpec User Manual as a .PDF document.
- This .PDF is also available in the BWSpec installation folder location (C:\BWTEK\BWSpec).

17 LANGUAGE

- Changes the main language of the BWSpec GUI.
- A Restart of BWSpec is required for this change to take place
- English: Changes the BWSpec GUI to English.
- Chinese: Changes the BWSpec GUI to Chinese.
- Japanese: Changes the BWSpec GUI to Japanese.
- This is an option that is sold separately. A password is required to enable this feature.
- To purchase this feature, contact us at <u>http://bwtek.com/support/</u>
- Import License File
- This is needed to change the BWSpec GUI to Japanese.

19 Shea Way, Newark, DE 19713, USA Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

Page 39 of 108

18TOOLBAR

Below is a brief description of the Toolbar icons. Many of these buttons can also be found in the Menu Bar under File, View and Acquire.

18.1 **Open**

- For opening files, saved in BWSpec, in the following formats:
- TXT File (*.txt) •
- TXTR File (*.txtr) •
- CSV File (*.csv)
- SPC File (*.spc)
- Spectral Signature File (*.sig)
- BWSpec Data File (*.BwRam) •

È.

BWSpec Data BIN File (*.BwRamS) •

18.2 Save

- Used to save data of selected spectrum from BWSpec in the following formats:
- *.txt
- *.txtr
- *.CSV
- *.txt(even)
- *.spc
- *.BwRam

18.3 Print

- A
- Opens a Print Preview window with the displayed data and header information.
- The user can make changes to the displayed graph and select what printer to use. •

18.4 *Excel*

- Exports the active/selected single spectrum from the Spectrum List Panel to Excel.
- Supported in all Excel versions.

Excel

18.5 Integration Time Control

- Ittegration Time Unit Time Average
- Total Integration Time = Integration Time * Multiplier
- Integration Time
- Exposure time setting for spectrometer.
- Maximum Value is based on the Time Unit.
- Minimum Value is based on the capability of the detector.
- Unit
- Time unit for spectrometer acquisition time.
- Set to minutes (min), seconds (sec), milliseconds (ms), or microseconds (µs). Microseconds (µs) is not available in Raman workspace.
- Time Average
- Range 1 65535.

Average value will take the time average multiplied by the number of scans at the given total exposure time and display a single spectrum, which is the average of the x number of scans. This can be used to provide a spectrum with better S/N ratio.

18.6 Acquire Control

- O O O O Ø
- Refer to Section 11 Acquire for more information.

18.7 Reset Graph

•

.

- Resets the graph to the default X-axis range for the spectrum and the Y-axis to the set scale.
- The set scale may be changed in Display Scales.

18.8 Clear Display

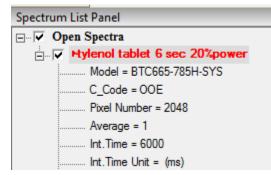
• Removes all spectra in the graph and spectrum list panel.

18.9 Display Scales

- Opens the **Display Scales** Settings window.
- Refer to Display Scales in Section 10.4 View under Menu Bar for more details.

18.10 BAC151x Control

- •
- Turn on the BAC151x Camera and opens a new View Window.
- The appropriate BAC151 A or B Plug-in must be enabled in Plug-In Manager, or else the button will be greyed-out.
- •
- 1000
- Refer to the BAC151x User Manual for further details.



19 SPECTRUM LIST PANEL

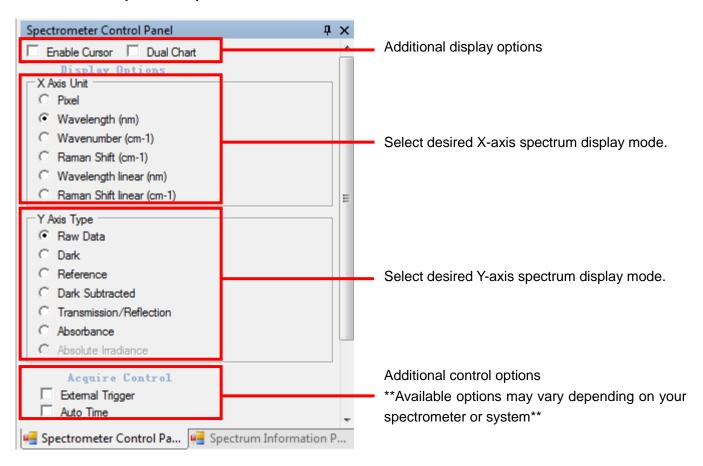
• The **Spectrum List Panel** is located on the top-right side of the main screen after being activated.

Spectrum List Panel	ųΧ
🖃 🔽 Open Spectra	

- Spectra listed are classified into two categories. The Measured Spectra refer to those acquired from an instrument, and Opened Spectra are those loaded from a disc. Measured spectra are numbered sequentially with a prefix "SP_".
- Spectra with checkmark 🔽 are "Checked" spectra and are displayed in the graph. Spectra without the check marks are hidden from the current graph display.
- The spectrum highlighted with arrow **>** (color may vary) next to its name indicates the spectrum currently selected. There can only be one Selected spectrum at a time.
- The "active" spectrum will have the current data overwritten if additional spectra are taken.
- A dark spectrum is used to subtract the contribution of the sensor itself. This is carried over until a new dark spectrum is acquired.
- To ensure data integrity, BWSpec prevents the measurement of a new spectrum when the last measured spectrum is unfinished, such as, when in Raman Workspace, the integration time of the signal and the dark spectrum are not the same. If the last Measured Spectrum has a raw and dark with different integration times, and an overlay is attempted, BWSpec will alert the user that the integration time of the raw and dark do not match.
- If the last Measured Spectrum is unfinished and is selected, it can be overwritten by a new measurement. No other spectrum can be overwritten by a new measurement.
- Right Click on individual spectrum from the list will bring up the following menu on the right→:
- Toggle the + sign to expand the information for a spectrum like below ↓ :

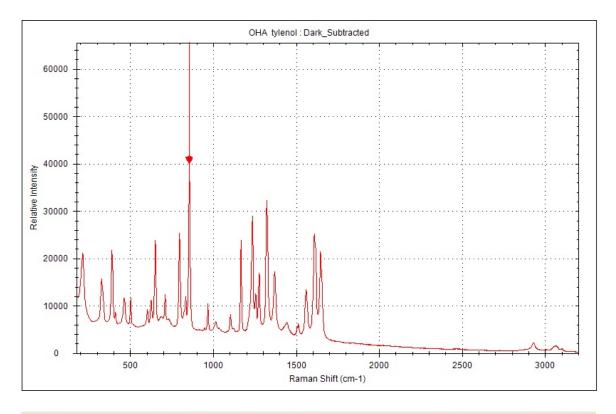
Rename Selected Spectrum Remove Selected Spectrum Remove All Checked Spectra Remove All Unchecked Spectra Enable / Disable Spectrum Thick LineWidth

20 SPECTRUM INFORMATION PANEL


- Every spectrum from the list panel will have data displayed in the **Spectrum Information Panel**, including details of the selected spectrum's acquisition parameters.
- Below is a short description of each entry:
- Name: Name of the spectrum in the Spectrum List Panel.
- DataSource: Spectrometer or Load File
- Model: Model Number.
- **CCode**: Configuration Code, related to Serial Number.
- **PixelNumber**: Number of pixels in detector.
- Average, Integration Time, Integration Time Unit; Details from the Toolbar.
- Laser Wavelength: For Raman only, otherwise set to default 785
- Laser Level: Laser Percentage from the Toolbar.
- **Probe Name**: For Raman only, from Hardware Setup.
- HadTakeRaw, HadTakeDark, HadTakeReference: True or False depending on if the acquisitions are taken.
- **Pretreat_X**: Data processing (smoothing, baseline removal, derivative, spectral math) steps for the Processed Data block are saved here.

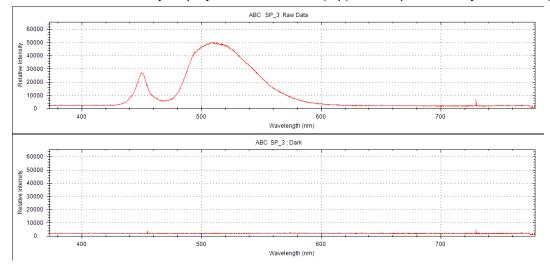
Spectrum Informa	tion Panel 🛛 📮 🗙
Name	SP_1
DataSource	Spectrometer
Model	BRC115P
CCode	ZLNA
PixelNumber	2048
Average	1
Integration Time	1000
Integration Time U	(us)
TimeMultiply	1
LaserWavelength	785
LaserLevel	0
ProbeName	
HadTakeRaw	True
HadTakeDark	True
HadTakeReferen	False —
HadDarkCompen	False
Pretreat_0	
Pretreat_1	
Pretreat_2	
Pretreat_3	
Pretreat_4	
Pretreat_5	
Pretreat_6	
Pretreat_7	
Pretreat_8	
Pretreat_9	-
Spectrometer .	🖷 Spectrum Infor

21 SPECTROMETER CONTROL PANEL


- The following sections are detailed descriptions of each item in the Spectrometer Control Panel.
- Each Workspace has default options in the Spectrometer Control Panel. Below is shown for the **BWSpec Workspace**.

21.1 Enable Cursor

- This provides a vertical line on the graph which follows the mouse cursor. Information relating to the cursor location on the graph will be displayed at the bottom of the window in the status bar.
- This feature can only be used on a spectrum that is displayed on the graph while the instrument is not acquiring data.



Pixel = 467 , Wavelength (nm) = 841.26 , Wavenumber (cm-1) = 11886.92 , Raman Shift (cm-1) = 856.0 , Relative Intensity = 36338

21.2 Dual Chart

• Select to simultaneously display Raw Data - dark (top) and a spectrum of your choice (bottom).

21.3 X Axis Unit

• Changes the X-axis display mode.

21.4 Y Axis Type

- Changes the Y-axis display mode.
- Raw Data: Shows raw form of the spectrum.
- Dark: Shows the Dark Array spectrum.
- Reference: Shows the Reference Array spectrum.
- Dark Subtracted (Processed): Starts as (Raw Dark) without any spectral processing. All additional spectral processing applies to this Y-Axis instead of Raw, Dark or Reference.
- Transmission / Reflection (%): [(Raw– Dark) / (Reference– Dark)] * 100
- Absorbance: -log (Transmission (%) / 100)
- Absolute Irradiance: Shows the corrected spectrum when Irradiance Calibration is enabled.
- The spectrometer must have a valid Irradiance Calibration file.
- Refer to Section 24.4, Irradiance Calibration Plug-In for additional details.

19 Shea Way, Newark, DE 19713, USA Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

		Display Options
Γ	- X A	xis Unit
l	0	Pixel
l	۲	Wavelength (nm)
l	0	Wavenumber (cm-1)
l	0	Raman Shift (cm-1)
l	С	Wavelength linear (nm)
l	$^{\circ}$	Wavenumber linear (cm-1)
l	\odot	Raman Shift linear (cm-1)
L		
L		xis Type
	YA	
	C Y A	xis Type
	C C	xis Type Raw Data
	YA CCC C	xis Type Raw Data Dark
	Y A 0 0	xis Type Raw Data Dark Reference
	YA OOOOOO	xis Type Raw Data Dark Reference Dark Subtracted (Processed)

Page 47 of 108

21.5 Acquire Control

External Trigger	
Spectrometer Contr	Spectrum Informati

• External Trigger

- When enabled, the external trigger will have the following two behaviors depending on the setting in Hardware Setup:
- External Trigger Mode(default): 1 trigger pulse triggers all averages (a scan with 20 averages will need only 1 trigger pulse);
- External Pacing Mode: 1 trigger pulse only triggers one average (a scan with 20 averages will need 20 trigger pulses);
- Refer to Section 23 in Hardware Setup and the product user manual for additional details.

Illumination LED

- This option appears when any BAC151x Plug-In is enabled.
- Manual control for LED illumination is available using the checkbox to toggle On/Off. LED Illumination will always automatically turn off during all Spectral Acquisition, including dark scan.

• Auto Time

- When enabled, the software will automatically scan and increase the integration time in increments until the response is close to saturation.
- Once the scan is complete, Auto Time will become disabled until enabled again manually.
- This feature is meant to automatically find a suitable integration time for the given sample.
- <u>Note:</u> Additional control options may also appear depending on your spectrometer or system. Refer to your Spectrometer's User Manual for more details.

22 STATUS BAR

Online	8234	Reference acquisition completed	Dark : ON	Reference: ON	Dark Compensate : ON	Linearity Correction: OFF		
Pixel = 270 , W	/avelength (nm) = 600.44 , Wavenu	umber (cm-1) = 16654.41 , Raman Shift (cr	m-1) = -16654.4 , Relative	Intensity = 5584				
•	 The Status Bar is located at the <u>bottom</u> of the main window. 							
		Online and						
•	Online / Offline	Online						
•	Shows status of s	pectrometer.						
•	Online – Spectror	neter connected						
•	Offline – Spectron	neter not connected, ch	neck USB cabl	e and Dev	ice Manager.			
	_							
•	Scan count	8234						
•	Increases in num	per with each scan.						
•	The box color will	change red to pink with	n each scan:					
•	Acquisition statu	ıs bar						
•	Increases as the	scan progresses						
•	Useful for long int	egration times or multip	ole averages.					
			-					
•	Dark Array Statu	S Dark : ON						
•	Gives status if a	Dark Scan has been	taken and s	aved into	the Dark Arra	ay for the "active"		
	spectrum.							
		-	_					
•	Reference Array	Status Reference: ON						
•	Gives status if a	Reference Scan has I	been taken ar	nd saved i	nto the Refere	ence Array for the		
	"active" spectrum							
•	Dark Compensat	Dark Compensate : Ol	N					
•	Gives status of th	e Dark Compensate fu	unction					
•	Linearity Correct	Linearity Correction:	OFF					

19 Shea Way, Newark, DE 19713, USA Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

Gives status of the Linear Correction function

•

23 HARDWARE SETUP

The following is an explanation for different features within Hardware Setup. Hardware Setup is only accessible from the Setup menu when BWSpec is communicating with a B&W Tek Spectrometer. Some features are model specific.

23.1 Common Setting

- Not all features listed will work with specific spectrometer models.
- Check your product's User Manual for details relating to additional controls.

🖷 Hardware Setup				
Common Setting Probe Setup BTC667N BTC667N (Continuous) BTC667N PulseOut				
External Trigger Timeout 0 *15= 0 (ms)	Set			
Close Laser on Dark Scan Close Laser After Data Scan Open Laser Before Data Scan	External Trigger Work Mode External Trigger Mode (One Trigger, N Scan, N=Average) External Pacing Mode (One Trigger, One Scan)			
Monitoring Spectrometer Temperature				
Monitoring Laser Temperature				
Automaticaly Take Dark After Data Scan				
Laser Timeout: 30 (minute)				
Enable System Response Standardization Result				
Enable Factory Access Write EEPROM				
Close	3			

23.2 AuxPort

• Not all features pictured will work with all spectrometers. Check the product's User Manual for details relating to AuxPort Controls.

 Hardware Setup	
Common Setting AuxPort	
Digital Input Pin Status: High Get Status 🔽 Monitor IO Pin After Scan Data	
Analog Input AD Value: Voltage(V): Get Analog	
Multi Purpose Pin Pin As: Laser Control ON OFF Pin Name: Laser Control	

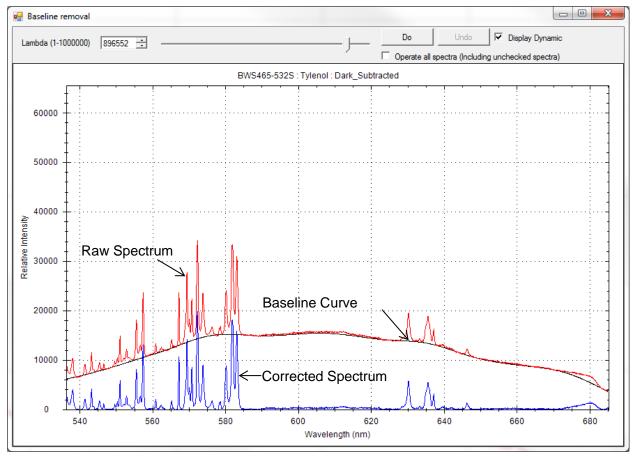
23.3 Probe Setup

- The **Probe Setup Tab** is to pre-configure probes for the system and defines which Raman Probe is available in the Experiment Setup.
- Select the Relative Intensity Correction ratio file provided on the BWSpec Installation flash drive. If you are missing your Ratio3 file, you may request a copy at http://bwtek.com/support/
- The Ratio3 information will now be displayed, Click **Done** to accept.

obe Name Inde	x Probe Se Name:	Probe_0	
	10000000000	ntensity Correction Ratio File (Ratio3_***.txt):	
		Select Ratio at EEPROM Select Ratio at HardDrive	···
	Ratio3:		

- You may use the Ratio3 created at the factory or you can create your own. Experienced customers can refer to Section 24.9 for more details. The appropriate Standard Reference Material is required to create a good Ratio3 correction file.
- EEPROM Slot Setup: Do not use this feature.

D. L. O. Lawrence



24 PLUG-IN MANAGER

The following is an in-depth explanation for each Plug-In function and its location on the Menu Bar.

24.1 Baseline Removal Plug-in

- The **Baseline Removal** function is used to perform baseline correction. This helps remove spectrum background to correct for fluorescence, baseline curvature, noise, or ambient light.
- Location: Menu Bar → Spectral Function
- A display window with three spectra will be displayed: raw spectrum (red), automatically fitted background curve (black), and the spectrum after background removal (blue). The color of the raw spectra reflects its color in the **Spectrum List Panel**.
- The lambda factor can be adjusted by moving the slider bar at the top, or by typing in the **Lambda** box. This manipulates the auto fitted background to achieve the desired baseline removal result. Click **Do** to apply changes to the main graph.

19 Shea Way, Newark, DE 19713, USA

Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

24.2 BAC151x Camera Plug-in

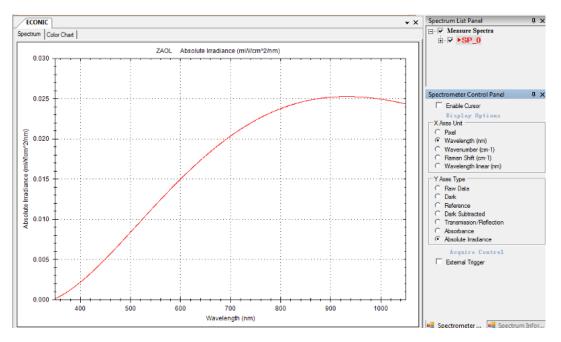
- The BAC151x Camera Plug-in is used to turn on the camera.
- Enables manual control of LED Illumination through checkbox under Acquire Control.
- Enables automatic control of LED Illumination during scans.
 - If LED is on before any scan, the LED will turn off automatically during the scan, then back on when completed.
 - o If LED is off before any scan, the LED will stay off until manually turned back on.
- Enables the BAC151x button in Toolbar.
- Location: in the Menu Bar → Setup
 - o Refer to the BAC151x User Manual for details.

Note: Disable this Plug-in to properly use spectrometers with built-in shutters.

24.3 Export Data Plug-in

- The Export Data Plug-in gives the function to export all spectral data into one text file.
- Location: in the Menu Bar \rightarrow File, choose **Export Data** \rightarrow **Export All Spectra Data**.
- Select the data information to be exported, and click Save As.
- All selected Spectra will be exported and saved to a text file.

🖳 Export All Spectra Data to One Te 🗖 🗉 🗾 🔀	AllSpectraData_2017-02-27_14-19-00.txt - Nc
Title (Head line) ✓ Pixel Sample-1 Sample-2	File Edit Format View Help Pixel, SP_0_DarkSub 0, -16092.00
Spectral Units	1, -14928.00 2, -390.00 3, -367.00
Pixel Wavenumber (cm-1)	4,-334.00
🗆 Wavelength (nm) 🔲 Raman Shift	5,-311.00
Spectral Data	6,-350.00 7,-349.00
Spectral Data	8,-389.00
Raw Data 🛛 %TR	9,-352.00
Dark Absorbance	10,-237.00
J Dark J Absorbance	11,-258.00
Reference Absolute Irradiance	12,-412.00
	13,-298.00
Dark Subtracted	14,-231.00
	15,-331.00
Data Spacing	16,-387.00
C Tab C ; (semicolon) . (comma)	17,-323.00
so rab so , (senicolon) so , (conina)	18,-269.00
	19,-263.00
C ; (semicolon) + Tab C , (comma) + Tab	20,-333.00 21,-282.00
	22,-225.00
	23,-321.00
Save as Cancel	24,-352.00
	25, -437.00
L	


19 Shea Way, Newark, DE 19713, USA

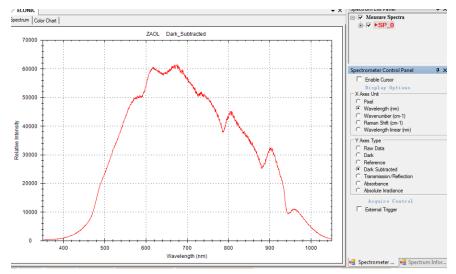
A Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

24.4 Irradiance Calibration Plug-in

- This option is available only when in the BWSpec Workspace. Irradiance Calibration can be conducted by B&W Tek. using NIST-Traceable Irradiance Standards and calibration setups, if so desired. Irradiance Calibration is an option that can be ordered upon placing a spectrometer order, or through a service request.
- Location: Menu Bar → Tools
- How to apply an Irradiance Ratio File
- Go to Setup > Experiment Setup
- Under Spectral Processing, select Irradiance Calibration under "Select Correction"
- Under that, click Ratio File button and find the appropriate Ratio file. Click OK.
- Enable the Checkbox next to Enable Irradiance Correction to enable the process.
- Save the configuration file and click Close when done.
- Click "Absolute Irradiance" on the Spectrometer Control Panel. The Absolute Irradiance curve will show on the display after a scan has been taken.
- You may need to adjust the X-axis and Y-axis scales in order to get a suitable display scale.

19 Shea Way, Newark, DE 19713, USA Tel

Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com


• How to Conduct Irradiance Calibration and create a ratio file

WARNING: This section is for advanced users only.

- In order to conduct an Irradiance Calibration, you must first have a NIST Traceable Lamp Source with certified values which cover the spectral range you will be calibrating your spectrometer to and the .DAT file that accompanies your lamp.
- It is also necessary to have the correct input optics for your spectrometer to collect the light, such as a fiber and an integrating sphere.
- The spectral irradiance calibration will allow a spectrometer to convert spectral measurements to absolute spectral irradiance measurements in units of light power in W/ [cm^{2*}nm], mW / [cm^{2*}nm] or µW / [cm^{2*}nm]. Alternatively, a spectral irradiance calibration can be used to calibrate the spectrometer for emissive photometric measurements, such as for the color of an emissive source (for example, LED).
- Your setup conditions, distance from source, and lamp current must be as close as possible to what your NIST Certificate states in order to conduct a successful calibration. Ideally, the light source should not fill the spectrometer's entire angular aperture. The light source should illuminate the spectrometer at a distance specified in the lamp source's calibration data.
- Given a correct experimental setup, the spectral irradiance calibration proceeds as follows with the assumption that the spectrometer is equipped with a suitable input optic (linearity correction is highly recommended):

- Adjust the integration time so that the maximum spectral response is just below the spectrometer's saturation level against the certified lamp at a specified distance. Stop the acquisition and freeze all physical setup with minimal disturbance.
- Step 1: Cover your light input aperture so that no light is gathered by your setup and take a *Dark* scan first. Then uncover the aperture and take a *Raw* scan. Select Dark Subtracted (Processed) Y-Axis Type to see the final data.

- From the Menu Bar, select **Tools** → **Irradiance Calibration**.
- Step 2: Click the Browse button and locate the lamp data file for the light source you are using for irradiance calibration. Your lamp data file must be configured in a manner in which BWSpec can read it. Please refer to Section 27 "Definition of Irradiance Data File Format" for formatting info.

Create Irradiance Correction Ratio File	
Step 1: Tum off light, take a dark scan, then tum on light, take a single raw	/ data scan.
Step 2: Please Select the Location of the Lamp File.	
	Browse
Lamp Data Info: Start WL WaveLength (nm)	Absolute Irradiance
End WL	
Inc WL	
Step 3: Input Distance and unit of Lamp Data . Distance 50 (cr	m) Unit uW/cm^2/nm ▼
Step 4: Select Curve Fit Method.	olations Order 7 -
Step 5: Select Data. © Use Current Spectrum	
Step 6: Input Distance between the lamp and the spectrometer. 50	(cm)
Step 7: Input Transmittance of Neutral Density Filters: 100 % ((Neutral Density Filters NO Netral Density Filter 💌)
Step 8: Set ratio file name Ratio1_	
Set ratio file path C:\BWTEK\BWSpec\Ratio	Browse
Step 9: Create ratio file Create	

19 Shea Way, Newark, DE 19713, USA

Page 56 of 108

Tel: +1 (302) 368-7824

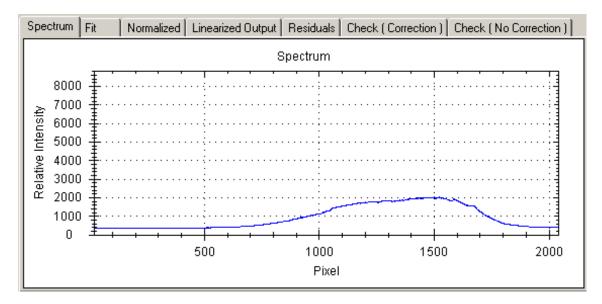
Web: www.bwtek.com

Fax: +1 (302) 368-7830

- **Step 3**: Input the distance at which your Calibrated Light Source was originally calibrated. This information can be found on your Certificate or the .DAT file. *Be careful to select correct units to match the certified data provided in the reference certified lamp data file.*
- Step 4: Choose either *Regression* or *Interpolation* to calculate Irradiance Ratio file.
- Step 5: Select Use Current Spectrum to use Dark Subtracted (Processed) data for calculation.
- **Step 6**: Select the distance between your input optics and your certified light source in your current setup. Also, make sure to enter all calibration related information, such as additional optics used, into the dialog box.
- Step 7: Input transmittance of neutral density filters.
- Step 8: Indicate the name of the ratio file and where you would like the data to be saved. We suggest that you keep the default naming scheme of the spectrometer (Ratio1_C-code). Set the ratio file path which is the Location where the ratio file will be saved.
- Step 9: Click Create to generate the Irradiance Ratio File.

24.5 Linearity Correction Plug-in

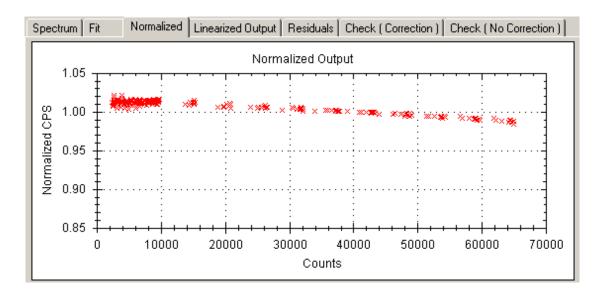
- Linearity correction will compensate for the detector array's nonlinear response by following a fitted response curve against received detector photons.
- A typical detector array may exhibit a nonlinear response with respect to incident photons at low light levels as well as when close to saturation. In these regions, doubling photons or doubling detector exposure time will no longer result in two times the detector's output, deviating from a desired linear response range.
- Location: Menu Bar → Tools
- Linearity Correction must be conducted by the factory in order for the Linearity Correction Coefficients to be saved into device memory. "Linearity Correction" is an upgrade option to be ordered when purchasing the spectrometer or through a service request.
- Activate Linearity Correction
- To activate linearity correction, go Setup > Experiment Setup and enable the checkbox. Linearity Correction only applies to **Dark Subtracted (Processed)** Y-Axis Type.


• How to Conduct Linearity Correction

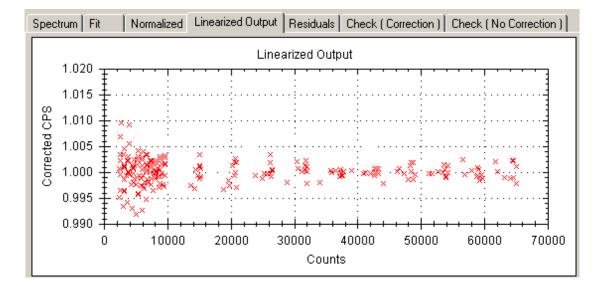
- For Advanced users, the linearity correction may be conducted at the customer site.
- o From the Menu Bar, select Option → Linearity Correction. The linearity correction window will appear. Follow Step 1 through Step 9 instructions in the window to proceed. See the next page.


🔛 Linearity Correction	
Current Integration Time(ms) 6 6 1 1 1	Adjust starting integration time, multiplier,
	and average. Peak intensity should be
Linearity Correction Process :	around 2,000 counts.
Step 1: Set the spectrometer to its Start Integration time.	
Step 2: Turn on the Tungsten Light Source and acquire data continuously.	Enable Boxcar smoothing during
Step 3 : Enable Average and Smoothing. Enable Average (36)	correction process.
Step 4 : Adjust Tungsten until Peak Intensity is around 2000 counts. Step 5 : Set the Data X-Axis and Y-Axis Range.	
X Left Position 0 🚔 Pixel Y Min J 2000 🛫 Counts	
X Right Position 2047 🖶 Pixel Y Max - J 65207 🛫	
	Display active Linearity Correction
Coefs_d0: 0 Coefs_d4: 0 Coefs_d1: 1 Coefs_d5: 0	
Coefs_d2: 0 Coefs_d6: 0	Coefficients saved to the flash.
Coefs_d3: 0 Coefs_d7: 0	
Step 6 : Select Pixels.	
Step 7: Run Scan to acquire / set the Peak Intensity, Take a Data Scan \rightarrow	Select from 4-7 order fitting curves and
Step 8: Turn DFF the Tungsten Light Source or Shutter. Take a Dark Scan →	calculate Linearity Correction Coefficients
Step 9: Select Order 7 🚔 then Calculate the L.R. Correction →	Print Linearity Correction Report
Spectrum Fit Normalized Linearized Output Residuals Check (Correction) Check (No Correction)	
Spectrum	
8000	
7000 ₽	
ka 7000 ± 6000 ± 5000 ± 8 4000 ± 8 4000 ± 8 3000 ± 9 000 ± 1 1111111111111111111111111111111111	
500 1000 1500 2000	
Pixel	
Stop acquired	

Spectrum

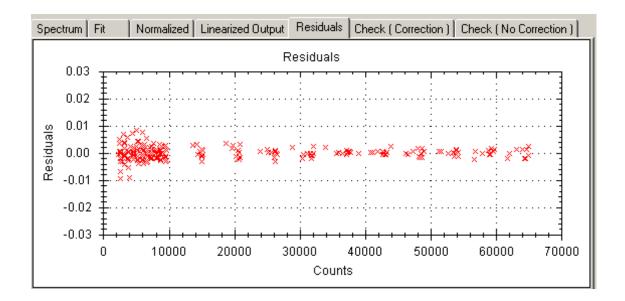

- o Displays the current spectrum based on the integration time at the top of the window.
- The graph may be zoomed in or panned just like the main window.
- Displayed is a Tungsten spectrum that has been attenuated to a Relative Intensity of ~2000 counts.

• Fit


- Displays the fitting curve of the correction based on the Order (Step 9).
- o Red is the Original, Green is the Fit curve, and Blue is the Corrected

Normalized

o Displays the output before correction

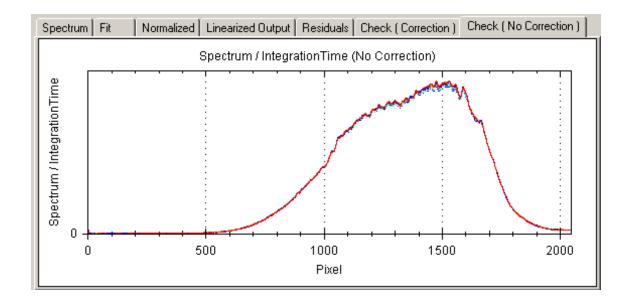

• Linearized

• Displays the output after correction.

19 Shea Way, Newark, DE 19713, USA Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

Page 61 of 108

Residuals


o Displays the percent difference between the corrected value and the real value of intensity.

Check (Correction)

o Displays the corrected Spectrum/Integration vs Time graph

• Check (No Correction)

- Displays the uncorrected Spectrum/Integration vs Time graph.
- **Note:** Once the Flash is re-read, the current active Linearity Coefficients will be lost. Linearity Correction conducted by the factory will have the coefficients saved in Flash.
- Note: The key for a successful linearity correction calibration setup is to provide a light input (Tungsten light source is suggested here) with adjustable intensity for the spectrometer to be calibrated so that the spectrometer shows a light response 500-1000 counts above its dark levels at its shortest integration time. This will provide the calibration with maximum useable dynamic ranges.

24.6 Performance Test Plug-in

- The Performance Test is a procedure that evaluates a Raman instrument's performance with regards to accuracy and repeatability of instrument readings. This feature is available when the software is communicating with a Raman instrument.
- The performance test will validate a single peak of a reference standard spectrum. It will check if the peak is within acceptable limits: the peak's signal must be within 30% of the factory settings and the peak's shift must be no more than one pixel off of the factory settings, where the factory setting is a predefined reference standard spectrum.
- Reference files are user created and should be made as soon as possible with the new unit. The performance test should be performed on a regular basis to ensure consistency in the performance and operation of the instrument.
- Location: Menu Bar → Tools

Performance Test	
🔀 🕞 🕞 🦳 R Current Integration Time(ms) 5000 5000 🔅 1 🔅 1 🔅	
Performance Test Create Reference File Performance Config TestResult Record	
Referene Standard List	
polystyrene cap.ini	
Ref. Standard File Name: C:\BWTEK\BWSpec4\System FQC\OSG\polystyrene cap.ini	
Reference Data Scan Reference File Save	
Reference Scan Step 5: Put standard sample under the probe then click	
scan button to proceed with the test	
Step 2: Set Integration Time 5000 (us) Step 6: Reposition the sample for scan 2 of 3 and then	
Step 3: Set Average Number 1 click scan button to proceed.	
Step 4: Enable Smooth Boxcar Smooth Step 7: Reposition the sample for scan 3 of 3 and then click scan button to proceed.	
60000 =	
50000	
[∞] 20000 ⁺ · · · · · · · · · · · · · · · · · · ·	
10000 ‡	
	<u>i</u>
500 1000 1500	
Pixel	

19 Shea Way, Newark, DE 19713, USA

A Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

Performance Test	Create Reference File	Performance Config	TestResult Record
Referene Stand	ard List		
polystyrene cap.	ini		

Create Reference File

- o A new reference file may be created in this tab.
- o The user is responsible for providing a Raman-active sample with distinguished peaks.
- Use the Acquire Spectrum buttons and the Integration Time at the top of the window to determine the correct values for the Reference Data Scan. Make sure the peaks are visible and distinguishable. By selecting Optimum Integration Time, the system will determine the best integration time to use.

Reference Data Scan Reference File Save		
Step 2: Set Integration Time 5000 (us)	Step 5: Put standard sample under the probe then click scan button to proceed with the test. Step 6: Reposition the sample for scan 2 of 3 and then click scan button to proceed.	
Step 4: Enable Smooth Boxcar Smooth	Step 7: Reposition the sample for scan 3 of 3 and then click scan button to proceed.	

• Reference Data Scan

- Follow the steps and select the appropriate integration time (ms), average number, and the option of smoothing for the scan
- o Take three scans of the Reference Sample in different positions.
- o There is no overlay of each scan

Reference Data Scan Reference Fi	e Save			
Reference File Save				
Reference Standard Name:	Cyclohexane	.ini	Save File	
Reference Standard File Name:	Cyclohexane_20140709	.spc		

- Reference File Save
 - o After all three scans are taken, go to the Reference File Save to create a standard File Name
 - The file will automatically be stored in C:\BWTEK\BWSpec

Performance Test	
Performance Test Create Reference File Performance Config TestResult Record Select Referene Standard Reference Standard Name: Cyclohexane_DB	Select a pre-configured reference standard
Test Parameters Test Date: Instrument: RBA_BTC665N-785S-SYS Reference Standard Name: Cyclohexane_DB_Integration Time: 5000 (ms) Ref. Standard File Name: C:\BWTEK\BWSpec4\System FQC\RBA\Cyclohexane_DB_20140729.spc Test Procedure	
Step 1: Put standard sample under the probe then click scan button to proceed with the test. Step 2: Reposition the sample for scan 2 of 3 and then click scan button to proceed. Step 3: Reposition the sample for scan 3 of 3 and then click scan button to proceed.	Scan the reference sample with the probe three different times at different positions on the sample
Test Result Instrument Performance Test Result Status: Peak Position Signal Intensity Test Graph Instrument Performance Test Result Status:	
Reference Spectrum 60000 50000 40000 10000 0 60000 10000 0 10000 10000 10000 10000 10000 Ready	
Keady .::	

Performance Test

 Click Setup then Performance Test and a dialogue box will appear. The Performance Test tab allows the user to select a pre-configured reference standard. A reference standard may be created in the Create Reference File tab.

• Select Reference Standard

• Use the same reference standard that is going to be used as a sample in the performance test. The default is polystyrene.

Test Parameters

- Test Date: will be filled in at the conclusion of the test.
- Instrument: Is the Raman unit that is currently being used for testing and is automatically filled.
- Reference Standard name: Is the name of the reference standard selected; this will also show the integration time when the Reference Standard was made.
- Ref. Standard File Name: The file name and location of the reference file.

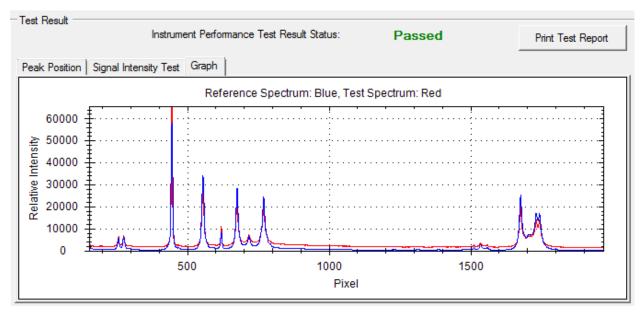
• Test Procedure

- o Follow each of the steps to take three scans of the Reference Standard at different positions.
- \circ $\;$ The integration time is pre-selected based on the Reference Standard.

• Test Result

- After the three sample scans are taken the software will compare the scans to the reference sample.
- The shift between the measured peak and predefined reference peak is no more than one pixel and the measured peak's signal is within 30% of the predefined reference peak's intensity (factory settings).
- The performance test will fail if the peak position, signal intensity test or HQI fails. In such cases, the instrument should not be used for measurements since it cannot provide consistent readings.
- Once the test is completed, the collected spectrum and test results are saved in the files. The spectrum is stored in a Grams SPC data file format (*.spc), while the test results are saved in a BWTek proprietary binary file format (*.ptf). These can be viewed in the Test Result Record tab.

Peak Position Signal Intensity Test Graph				
Peak Poistion Tes	t Status:	Passed		
Reference Peak F	osition (Pixel):	447		
Measure Peak Position (Pixel):		446	HQI:	96.11
Peak Shift (Pixel):		1.0		
Test Acceptance Limits:		+/- 1 (Pixel shift)	Minimum HQI:	85
Spectra File: C:\BWTEK\BWSpec4\LogData\Perftest\RBA\2014\PT_20140806105349.spc Results File: C:\BWTEK\BWSpec4\LogData\Perftest\RBA\2014\PT_20140806105349.ptf				


Peak Position

 Displays the peak position of the Reference Sample and the Measured Sample and the acceptable limits of the test including pixel shift and HQI.

Peak Position Signal Intensity Test Grap	h
Signal Intensity Test Status: Pas	ssed
Reference Peak Signal Intensity:	58370
Measure Peak Signal Intensity:	65535
Test Acceptance Limits: Minimum :	40859 Maximum : 65535

- Signal Intensity Test
 - Displays the peak signal intensity of the Reference Sample and the Measured Sample and the acceptable limits of the test.

• Graph

• Displays the Spectrum of the Reference Sample and the Measured Sample as a graph of relative intensity vs pixels.

Perform	nance Test Create Reference	e File Performance Co	onfig TestRes	ult Record				
Perf	formance Test Records	erator	Year		N	lon	Day	
	Al		All	-	Al	-	AI	-
PT PT PT	20140625082739.ptf 20140625082940.ptf 20140625083013.ptf 20140625083030.ptf 20140625083132.ptf 20140625083132.ptf						,	
Re	ecord Infomation							1
	Performance Test Result :	Passed				Print Test R	ecord Report	
1	Test Date:	2014-07-09 13:46:24			_			
1	nstrument:	OSG BTC665N						
1	Reference Standard Name:	Cyclohexane Integra	ation Time: 500	0 (ms)				
1	Ref. Standard File Name:	C:\BWTEK\BWSpec	4\System FQC		hexane_2	20140709.spc		
	Spectra File:	C:\BWTEK\BWSpec	4\LogData\Pe	ftest\OSG\2	2014\PT_	_201407091346	S24.ptf	
		Reference S	Spectrum: Blu	ie, Test Spe	ectrum:	Red		
-	40000 40000 20000 0 4000 40000 40000 40	500	10	D0 Pixel	· · · · · · · · · · · · · · · · · · ·	1500	Jr	

Test Result Record

- The spectrum is stored in a Grams SPC data file format (*.spc), while the test results are saved in a BWTek proprietary binary file format (*.ptf).
- Performance Test Records
 - The test records may be searched by Operator or by Date
 - Select the file to view its information
- Record Information
 - o The results of the Performance test are displayed
 - Click the **Print Test Record Report** to view and print the record.

19 Shea Way, Newark, DE 19713, USA Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

Page 70 of 108

Performance Test Create Reference File	Performance Config T	estResult Record
Config		
Xaxis_Min (RamanShift)	200	(cm-1)
Xaxis_Max (RamanShift)	2800	(cm-1)
Peak Threshold	1500	(counts)
Laser Level (%)	100	
Standard HQI	85.00	
Standard Peak Pixel Shift	1	
Standard Peak Intensity High Ratio	1.30	
Standard Peak Intensity Low Ratio	0.70	
Enable Change Config		

• Performance Config (Configuration)

- o This displays the configuration of the Raman instrument in the performance test.
- When the Enable Change Config box is checked the top four values can be changed.
- o We recommend that only our Advanced users attempt to change the values.

24.7 Raman Shift Calibration Plug-in

This Plug-In is not intended to be used by end users. Raman Shift Calibration must be conducted by B&W Tek, certified Service Center, or Distributor equipped with specialized calibration setups. B&W Tek, will not be responsible for any loss of your work and for any consequence if factory configuration is accidentally changed or corrupted.

24.8 Reference Material Correction Plug-in

- In applications such as diffuse reflectance measurements, a certified reflectance standard is often used to serve as a reference. The %R values throughout the measurement range are then calculated by using ratios with respect to the reference in a relative sense. With the available certified %R values, the BWSpec software can calculate the "absolute reflectance" against the reference.
- Location: Menu Bar → Option
- The following is a table of typical %R values obtained using a certified white PTFE type material spectral reflectance standard (B&W Tek model number SRR-1.25-99 or SRR-2.0-99).

Wavelength (nm)	Certified %R value	Wavelength (nm)	Certified %R value
360	98.5	600	98.9
370	98.7	610	98.9
380	98.7	620	98.9
390	98.7	630	98.9
400	98.8	640	98.9
410	98.8	650	98.9
420	98.8	660	98.9
430	98.8	670	98.9
440	98.8	680	98.9
450	98.8	690	98.9
460	98.8	700	99.0
470	98.8	710	98.9
480	98.9	720	99.0
490	98.9	730	98.9
500	98.9	740	98.9
510	98.9	750	99.0
520	98.9	760	98.8
530	98.9	770	98.9
540	98.9	780	98.9
550	98.9	790	98.9
560	98.9	800	99.0
570	98.9	810	98.9
580	98.9	820	99.0
590	98.9	830	98.9

19 Shea Way, Newark, DE 19713, USA

Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

If we define %Rs (non-correction) as the sample percent reflectance at a given wavelength: %Rs (non-correction) = (Sample intensity/Reference intensity)*100.

After reference material correction:

Rs (absolute) = Rs (non-correction) * Certified Rvalue/100 where all values are calculated at given wavelengths across the calibration wavelength range.

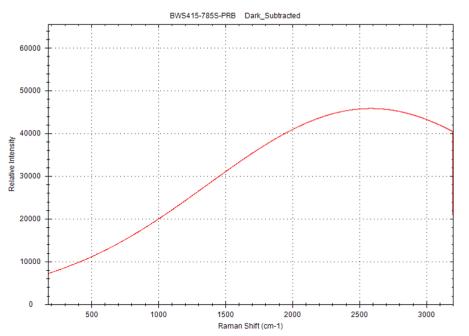
- Generate Reference Material Correction Ratio File
- This section is for advanced users only.
 - Collect a spectrum using reference materials.
 - $\circ \quad \text{Select Option} \rightarrow \text{Reference Material Collection}.$
 - Click and browse to locate the "Reference Material ratio.txt" file. You will be directed to the default path where this file is stored: C:\Program Files\BWTEK\BWSpec4\ratio\. This file contains the certified values of spectral reflectance over the wavelength range of interest. After the file is loaded, the standard data will be populated.

C:\Program Files\BWTEK\BWSpec4\ratio\SRS-99-010.txt					
Standard Data Info:	WaveLength (nm)	Data	-		
Start WL 360	360	98.5			
End WL 830	370	98.7			
Inc WL 10	380	98.7			
	390	98.7			
	400	98.8	-1		
		1	<u> </u>		
tep 2: Select Curve Fit Method	Regressions	C Interpolations			
tep 3: Select Coefficient Order 6	•				
tep 4: Set ratio file name Ratio2	_ZAOL				
Set ratio file path C:\Pro	gram Files\BWTEK\BWSpec	4\Ratio			
tep 5: Create ratio file	Create				

- Follow the steps stated to fill out the parameters for the correction. The default ratio file name is Ratio2_C-code.
- o Click **Create** to generate a Ratio2 file.
- Enable Reference Material Correction Files.
- o Select Option→ Enable Reference Material Correction.
- Check the box for Enable Reference Material Correction.
- o Click and locate the "Reference Material correction ratio2.txt" file, then click Set.

19 Shea Way, Newark, DE 19713, USA Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

Page 73 of 108



24.9 Relative Intensity Correction Plug-in

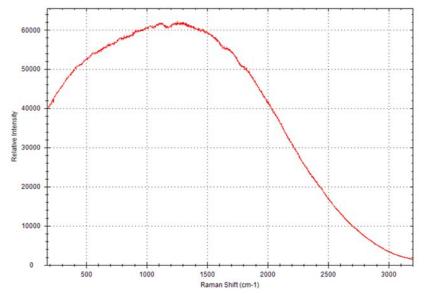
- Relative intensity correction is specific for Raman spectrometer users. Its purpose is to correct unique relative spectral responses against a traceable standard for individual spectrometers. The corrected spectral response of a Raman spectrometer makes meaningful comparisons between data obtained from different instruments possible.
- The relative intensity correction involves the use of Standard Reference Material 2241 (SRM 2241) for Raman spectrometers when a 785nm excitation laser source is used, SRM2242 when a 532nm excitation laser source is used and SRM2244 when a 1064nm excitation laser source is used.
- Location: Menu Bar \rightarrow Tools

Apply Relative Intensity Correction

- To activate the relative intensity correction feature for data acquisition, a probe needs to be created in Hardware Setup > Probe Setup, then enable Relative Intensity Correction in Experiment Setup. See 23.3 and 15.7
- To change the relative intensity correction setting of saved spectra, use the Batch Re-Process function.

19 Shea Way, Newark, DE 19713, USA Tel: +1 (302) 368-7824

Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com



- How to conduct a relative intensity correction
- This calibration comes standard with B&W Tek's applicable portable Raman systems. For advanced users, this may be conducted at a customer site with appropriate equipment. A probe must be connected to a Raman system or a laser and a spectrometer in order to get proper results.
- Ensure that the wavelength of the excitation laser you are using is entered into the **Raman Excitation Laser Wavelength** page on the **Display Scales** (for example, 785nm). You will need to determine the laser wavelength and put in the appropriate measured value.

🖳 Display Scales Setting	X
C Upper Chart	X-axis Y-axis Raman Excitation Laser WaveLength Raman Excitation Laser Wavelength 785.155 (nm) Raman Data Saturation Check
	Set Cancel

- Determine the appropriate integration time: use the standard reference material SRM2241 (for 785nm), SRM2242 (for 532nm) or SRM 2244 (for 1064nm) to run a scan. The integration time of the scan should be adjusted to a value such that the highest intensity level is just below saturation level (65000 counts).
- Run a dark scan with the same integration time. For B&W Tek Raman systems, the laser turns off automatically when the dark scan is being collected. For modular Raman spectrometers, make sure the laser is off when a dark scan is being collected.
- Run a reference scan using the same standard reference material with the same integration time with laser turned on.

• From the Menu Bar, select Option > Relative Intensity Correction. The Relative Intensity Correction window will appear.

🖳 Create Relative Intensity Correction Ratio File						
Standard Material: SRM 2241 R2 (Raman)						
Step 1: Turn off light,take a dark scan,then turn on light,take a reference scan						
Step 2: Select Coefficients of the Certified Polynomial						
Certified Value Polynomial Co	efficient (20 - 25 Celsius scale)					
I_SRM(v) = A0 + A1*v + A2	²∿^2 + A3°v^3 + A4°v^4 + A5°v^5					
A0 0.0971937	A3 2.16023E-10					
A1 2.28325E-04	A4 -9.77171E-14					
A2 -5.86762E-08	A5 1.15596E-17					
Step 3: Select Reference Data	Step 3: Select Reference Data (Use Current Reference Data Use Current Spectrum					
Step 4: Select Correction Range	Left 64 cm-1					
	Right J 3201 cm-1					
Step 5: Set ratio file name Ratio3_OMD						
Set ratio file path C:\BWTEK\BWSpec4\Ratio						
Step 6: Create ratio file Create						

- Select the appropriate standard material (for example, SRM2241).
- Select Use Current Reference Data.
- Set the ratio file name and the path where the ratio file will be stored.
- Click the **Create** button. The **Relative Intensity Correction** file is created and the Ratio3 file is saved in the designated path.

24.10 Spectra Math Plug-in

- This function provides the ability to perform math functions on a single, or multiple spectra.
- Location: Menu Bar → Tools

Spectra Math	One Spectrum Math
	Two Spectra Math Spectra Normalize to Constant Value
	Spectra Normalize by Total Integration Time
	Spectra Normalize by Unit Vector

• One Spectrum Math...

💀 One Spectra Ma	th 🗆 🗆 🗙			
Spectrum A:	C All Spectra			
	O All Checked Spectra			
	One Spectrum			
	SP_1			
Value b:	1			
New Spectrum =	⊂ A+b ⊂ A-b @ Axb ⊂ A÷b			
	OK Cancel			

• Two Spectra Math...

💀 Two Spectra M	ath	
Spectrum A:	SP_1	•
Spectrum B:	SP_2	•
New Spectrum =	C A+B ⊙ A-B C AxB	⊂ A÷B
_	OK Cancel	

• Spectra Normalize to Constant Value...

💀 Spectra Norma					
Spectrum A:	C All Spectra				
	All Checked Spectra				
	One Spectrum				
	SP_1	-			
Max Value to:	50000	÷			
	OK Cancel				

• Spectra Normalize by Total Integration Time...

🖳 Spectra Normalize by Integrati 🗖 🗉 🗾	
Spectrum A:	All Spectra
	O All Checked Spectra
	One Spectrum
	SP_1 •
New Spectrum =	Spectrum A
	÷ Integration Time
	× 1 ÷
0	Cancel

• Spectra Normalize by Unit Vector

🖳 Spectra Normali	ze by Unit Vect 📼 😐 🔀
Spectrum A:	C All Spectra
	C All Checked Spectra
	One Spectrum
	SP_4 💌
New Spectrum =	Spectrum A
	÷ Spectrum A
	× 1
ОК	Cancel

19 Shea Way, Newark, DE 19713, USA

Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

24.11 System Response Standardization

Previously named "Laser Power Calibration" in BWSpec4.03. This Plug-In is not intended to be used by end users. System Response Standardization must be conducted by B&W Tek, certified Service Center, or Distributor equipped with specialized calibration setups. B&W Tek will not be responsible for any loss of your work and for any consequence if factory configuration is accidentally changed or corrupted.

24.12 Timeline Plug-in

- The Timeline function provides automated, timed recording of acquired spectra and analysis
 results within the scheduled time interval parameters set by the user. These spectra are then
 saved into individual files and are displayed individually in the main graph. The data acquisition
 parameters such as laser power and integration time must be set in the main BWSpec window
 before entering the timeline dialog.
- If Dark and Reference spectra are taken before beginning timeline, they will be added to all additional timeline created spectra.
- Location: Menu Bar \rightarrow Setup \rightarrow Experiment Setup

1	Timeline Setup	
		Display Spectrum Overlay
	Save path C:\Users\davidb\Documents\BwtekData	
	Delay time between spectra (ms) 100 -	File Name Prefix data_
Enable External Trigger function in Timeline mode	Total # of spectra to collect 10	File Name Suffix
	External Trigger	File type .TXTR (v201 -
Start Timeline acquisition with immediate effect, or on a timer	Start Mode © Immediate © On Timer	7
countdown	Start Mode G Immediate On Timer	
	Set	Close
l		

19 Shea Way, Newark, DE 19713, USA

Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

A A 1 1

- Enter settings, including interval time (the delay time between each spectral acquisition), number of scans, file name suffix and/or file name prefix, data format for saved files and save path.
- The spectra collected will be saved in the designated path. If no specific suffix is assigned, a default of _1, _2, _3 and so on will be assigned to each spectrum.
- When using Timeline, the regular Acquisition and Continuous Acquisition buttons are greyed out and replaced with the Timeline Acquisition button.
- The Main Graph will split into a Dual chart. The top graph will display the current Raw data and any overlay data. The bottom Chart will display Peak Monitoring as a function of time.

• Note:

Burst Mode is currently available on Exemplar series spectrometer models with USB3 connection. Connection of Exemplar models via USB2 can still be used for operation in Burst Mode but may result in a loss of performance such as limited Frames of spectra.

- Timeline Load
- This function allows user to re-run previously saved Timeline series with the ability to re-define data processing and analysis.
- To automatically load the files that were saved previously, click File and select Timeline Load. Click Load path to select the folder location for the timeline data when the corresponding files are displayed on the Spectrum display panel.
- May be used with Batch Re-Process to reprocess the data as you load it into BWSpec.
- To perform analysis and display results in lower chart, check Batch Process Setup and define the data processing steps and analytics as in Experiment Setup. For convenience, some settings can be copied from the current Experiment Setup and then edited.
- Location: Menu Bar → File
 - Click the Substitution to automatically load each data file from the folder into the Spectrum List panel sequentially. If Batch Re-Process Setup is checked, each loaded spectrum will have the Batch Re-Process applied
 - \circ Click the \bigcirc button to manually load the spectrum file forward, one at a time.
 - Click the <u>u</u> button to manually load the spectrum file backwards, one at a time.
 - Click the Solution to resize the Timeline Load window.
 - Click File type to select a saved file format and Load file data to Excel button to load all the data in the selected folder location into a Microsoft Excel spread sheet. Please do not try to access the Excel sheet until the data finished loading.

🖶 Timeline l	Load				23
Load path	C:\Users\davidb\Do	cuments\BwtekData\665			
	Batch Proces	s Setup	1		
Auto Load a	a spectrum every (ms)	200 ÷			
File type	*.TXTR 💌	Display Spectrum Ov	verlay	Load file data to Excel	
C:\Users\da C:\Users\da C:\Users\da C:\Users\da C:\Users\da C:\Users\da C:\Users\da C:\Users\da	avidb\Documents\Bwt avidb\Documents\Bwt avidb\Documents\Bwt avidb\Documents\Bwt avidb\Documents\Bwt avidb\Documents\Bwt avidb\Documents\Bwt	ekData\665\data_01_txtr ekData\665\data_02_txtr ekData\665\data_03_txtr ekData\665\data_03_txtr ekData\665\data_04_txtr ekData\665\data_06_txtr ekData\665\data_07_txtr ekData\665\data_08_txtr ekData\665\data_09_txtr ekData\665\data_10_txtr ekData\665\data_10_txtr			

24.13 Wavelength Calibration Plug-in

This Plug-In is not intended to be used by end users. If your spectrometer is in need of calibration, please contact B&W Tek at <u>http://bwtek.com/support/</u>. Wavelength Calibration must be conducted by B&W Tek, Distributors, or OEM customers equipped with certified and traceable Light Standards and specialized calibration setups.

25 COLOR MEASUREMENT

About Color Measurement

The color measurement characterizes an object (for example, illumination source) in terms of its chromaticity and radiometry. Chromaticity refers to the quality of the object regardless of its luminance, while radiometry measures the radiant energy or electromagnetic energy of the object.

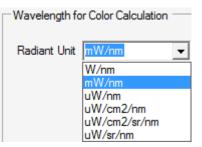
Note: The color measurement result shown in the *Color Chart* tab is only available when the spectrometer in use has a spectral range that incorporates spectral values between 400 nm and 700 nm.

Before performing a color measurement, the system should be normalized by taking a Reference scan or irradiance calibrated.

From the Menu Bar, select Setup \rightarrow Color Setup. A dialog box will display, where the settings for color measurement can be adjusted.

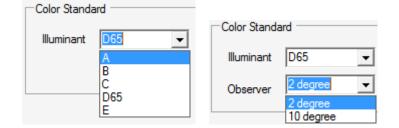
🖳 Color Measure Setup	
Reference Color Setting L a b 0 0 0 Set Lab Value as Setting	Color Standard Illuminant D65 Observer 2 degree 🗸
Wavelength for Color Calculation	Color Calculation Source
Radiant Unit mW/nm	Color Calculation Source XT/R
Distance: 10 (cm)	
Start WL 350 (nm)	
End WL 750 (nm)	
Interval WL 10 (nm)	
Set (Cancel Apply

19 Shea Way, Newark, DE 19713, USA


Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

 Color Calculation Source shows a dropdown menu will allow users to choose between %T/R or Irradiance for the measurement.

Color Calculation Source		
Color Calculation Source	% T/R	-
	% T/R	
	Irradiance	

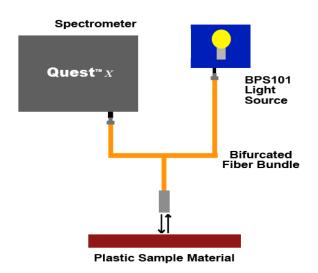

• Radiant Unit can be selected from the Wavelength for Color Calculation box:

• Choose Distance, Start WL, End WL, and Interval WL for the measurement.

-Wavelength fo	or Color Calculation	
Radiant Unit	mW/nm	•
Distance:	10	(cm)
Start WL	350	(nm)
End WL	750	(nm)
Interval WL	10	(nm)

• Select your color measurement standard from the **Color Standard** box, including **Illuminant** and **Observer**.

19 Shea Way, Newark, DE 19713, USA


Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

Reference and Dark Scan for %T/R Measurement

To perform a %T/R based color measurement, a white reflectance standard in reflectance setup and a stable light source covering the color range should be used. Light sources such as the BPS101 and BPS2.0 from B&W Tek are suitable candidates.

As the apparent color of reflective objects depends upon both the spectral response of the spectrometer and the spectral output of the illumination source, a reflectance reference scan should be performed often so that the error due to the lamp drift is minimized.

Connect the light source and the spectrometer via a fiber reflectance probe.

Turn on the light source and allow it to warm up.

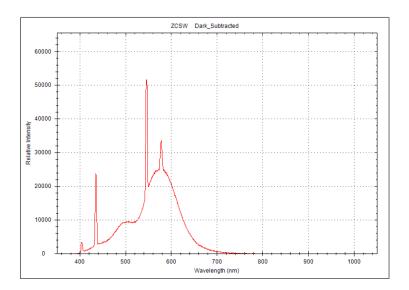
- Perform a reference scan.
- Perform a dark scan using the same integration time as the reference scan. Make sure to place the probe onto an absorbing black material or physically block the light from entering into the probe for the dark scan.

Irradiance for Color Measurement

To perform an irradiance calibration based color measurement:

From the Menu Bar, select Setup → Color Setup. A dialog box will display, where the settings for color measurement can be adjusted. Inside the box for Color Calculation Source, select Irradiance for the measurement.

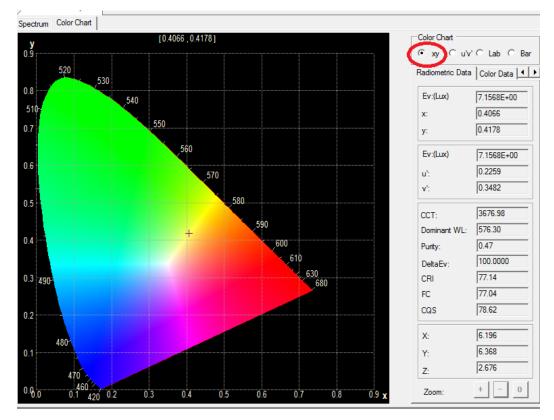
Reference Color Setting		Color Standard Illuminant D65 Observer 2 degree
Wavelength for Color Calcula	ation	Color Calculation Source
Radiant Unit mW/nm	-	Color Calculation Source
Distance: 10	(cm)	Photometric Conversion
Start WL 400	(nm)	Photopic
End WL 700 Interval WL 10	(nm) (nm)	C Scotopic
Set	Ca	ancel Apply


- Enable irradiance calibration from **Option** → **Enable /Disable Irradiance Calibration**, and select the corresponding Irradiance Calibration ratio file (Ratio1_ccode.txt).
- Select Photopic or Scotopic Photometric Conversion option to calculate perceived color.
- Click Apply.

Color Analysis

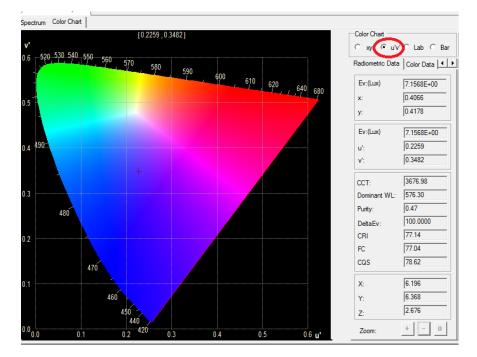
To acquire sample color data:

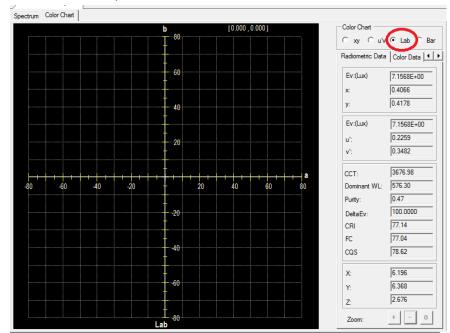
- Place the probe onto the desired sample to be measured.
- Acquire data scan on the sample material intended for color analysis.


Data Display

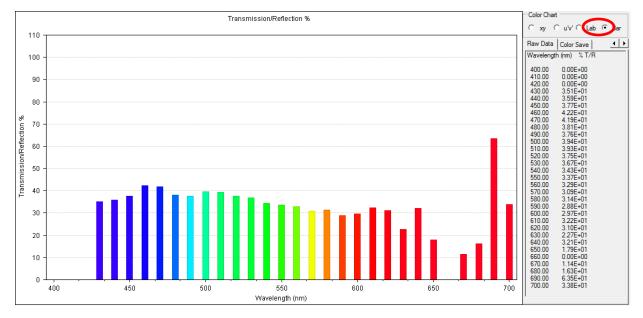
Click the **Color Chart** tab for the chromaticity diagram and data display. (Color Chart must be enabled in the Color Measure Setup window)

Options for four different CIE color spaces are available:




CIEXYZ color space

CIELUV color space


CIELAB color space

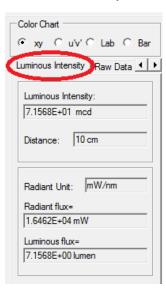
19 Shea Way, Newark, DE 19713, USA

Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

Color Bar

The radiometry and chromaticity data is displayed in five categories.

Radiometric Data

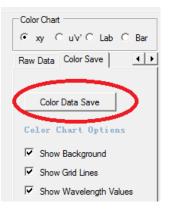

Radiometric Data	Dolor Data 🚺 🕨
Ev:(Lux)	7.1568E+00
x:	0.4066
у:	0.4178
Ev:(Lux)	7.1568E+00
u':	0.2259
v ':	0.3482
CCT:	3676.98
Dominant WL:	576.30
Purity:	0.47
DeltaEv:	100.0000
CRI	77.14
FC	77.04
CQS	78.62
X:	6.196
Y:	6.368
Z:	2.676

Color Data

Radiometric Data Color Data 🚺
Illuminant =D65,Observer= CIE 1931 10 nm interval from 400 nm to 700 nr
X = 6.196 Y = 6.368 Z = 2.676
x = 0.4066 y = 0.4178 z = 0.1756
u'= 0.2259 v'= 0.3482
L* = 100.000 a* = 0.000 b* = 0.000
L* = 100.000 u* = 0.000 v* = 0.000
L* = 100.000 C* = 0.000 h* = 0.000
HL* = 100.000 Ha* = 0.000 Hb* = 0.000

• Luminous Intensity

Raw Data


Raw Data	Color Save	4 🕨
	h Irradiance	
(nm) (uW/cm^2/nm)	
400.00	6.76E-04	
410.00	1.46E-03	
420.00	2.09E-03	
430.00	2.80E-03	
440.00	3.49E-03	
450.00	3 75E-03	
460.00	3.97E-03	
470.00	4.44E-03	
480.00	4.47E-03	
490.00	4.51E-03	
500.00	4.26E-03	
510.00	4.32E-03	
520.00	4 58E-03	
530.00	5.36E-03	
540.00	7.07E-03	
550.00	9.34E-03	
560.00	1.12E-02	
500.00	1.075.00	

Color Save

Color Chart
∙ xy ⊂ u'v'⊂ Lab ⊂ Bar
Raw Data Color Save
Color Data Save
Color Chart Options
Show Background
Show Grid Lines
Show Wavelength Values

• Click Color Data Save to save the color data as a BWSpec Color TXT file (.*txt).

- There are three **Color Chart Options** available for color diagram settings:
 - o Show Background
 - o Show Grid Lines
 - o Show Wavelength Values

Color Chart Options
Show Background
✓ Show Grid Lines
Show Wavelength Values

26 IRRADIANCE RATIO FILE DATA DEFINITION

Ratio1_ccode.txt File details and explanation of data:

RATIO1_ccode.TXT INFORMATION		EXPLANATION
BWSpec Version=BWSpec 4.04	4	Software Version used when the ratio file is created
Irradiance Ratio File Version=1.	0	Ratio File Version
CCode=XXX or XXXX		C-code of Unit
Int.Time=1100		Integration Time used when the ratio file was created
Distance=75		Distance used for the ratio file creation from the calibration light source to the light input optics aperture
Lamp Name=350-780.DAT		Name of Lamp Data File Used
Lamp StartWL=350		Starting WL of Lamp Data File Used
Lamp EndWL=780		Ending WL of Lamp Data File Used
Lamp IncWL=10		Increments of WL interval from Start WL to End WL
Lamp Measure Distance=75		Distance for which Lamp Data file was created
Lamp Unit Index=2	Index 0 =W/cm^2/r	m; Index 1 = mW/cm^2/nm; Index 2 = uW/cm^2/nm; Units will match the Lamp Data file and the units of the irradiance data
Lamp Coefs Order=7		Order of curve fit for Regression when creating the ratio file
Coefs_C0=-102.802359649056		Curve Fit Values
Coefs_C1=1.38796702045458		Curve Fit Values
Coefs_C2=-0.00789398471358277		Curve Fit Values
Coefs_C3=2.45424259313939E-5		Curve Fit Values
Coefs_C4=-4.51571710685247E-8		Curve Fit Values
Coefs_C5=4.93405335866037E-11		Curve Fit Values
Coefs_C6=-2.9685358194907E-14		Curve Fit Values
Coefs_C7=7.588143959E-18		Curve Fit Values
irrands_yaxis_min=0		Y-axis minimum Display Scales Settings value
irrands_yaxis_max=4.38087481104945		Y-axis maximum Display Scales Settings value
irrands_DispWLMin=350		X-axis minimum wavelength Display Scales Settings
irrands_DispWLMax=780		X-axis maximum wavelength Display Scales Settings
start_wv_irrands=350		Start WL for Irradiance Calibration (should match Lamp StartWL)
end_wv_irrands=780		End WL for Irradiance Calibration (should match Lamp EndWL)
interval_wv_irrands=10		Increments of WL interval from Start WL to End WL (should match Lamp IncWL)
Pixel ; Ratio ; Ratio		Pixel number ; Ratio (Linearity Correction disabled) ; Ratio (Linearity Correction enabled)
272;5.88055754188743E5;4.87368884634631E-5		
273;6.81553361643328E-5;5.60679388523222E-5		
274;7.19969136787624E-5;5.9194063207757E-5		

27 DEFINITION OF IRRADIANCE DATA FILE FORMAT

Certified Standard Lamp data file example:

Start WL=250	starting wavelength (nm)
End WL=2500	ending wavelength (nm)
Distance=50	distance at which lamp data is generated
units=mW/cm^2/nm	lamp data unit, choice of: W/cm^2/nm; mW/cm^2/nm; uW/cm^2/nm
S-1169	designation of the standard lamp (name, serial numberetc.)
5	starting flag
250	flag for starting wavelength (nm)
2500	flag for ending wavelength (nm)
10	increment of wavelength per data point
0.760E-05	standard lamp irradiance data at wavelength = 250 nm (250+0*10)
1.788E-05	standard lamp irradiance data at wavelength = 260nm (250+1*10)
3.156E-05	standard lamp irradiance data at wavelength = 270nm (250+2*10)
•••••	
•••••	
3.795E-03	standard lamp irradiance data at wavelength = 2500nm (250+225*10)
5	ending flag

Appendix A: Declaration of TXT File

The TXT text file has two block areas: flag block and data block. The flag block contains acquisition parameters and settings. The data block contains the acquired spectra data (highlighted by yellow). The flag block length may vary and an example of text file is shown below.

To read all data, the user should

- 1. Find line "Pixel; Wavelength; Wavenumber; Raman Shift; Dark; Reference; Raw data #1;Dark Subtracted #1;%TR #1;Absorbance #1;Irradiance (lumen) #1";
- 2. Read from next line, it is the data of pixel 0
- 3. Continue to read the next [pixelnumber-1] line

File Version;BWSpec4.03_20_C	//BWSpec4 version that saved file	
Date;2015-07-16 19:56:56	//saved file date	
title;BRC112	<pre>//spectrometer title name that saved data</pre>	
model;BRC112	//spectrometer model	
c code;ABC	//spectrometer c code	
operator;	//operator that saved file	
port1;0	<pre>//port number if spectrometer is RS232 interface</pre>	
baud1;3	<pre>//baudrate index if spectrometer is RS232 interface</pre>	
pixel_start;0	//start pixel	
pixel_end;2047	//end pixel	
step;1	//the data index step	
units;0	<pre>//Spectrometer x-axis unit (0=Pixel, 1=wavelength,</pre>	
	2=wavenumber, 3=Raman shift)	
bkcolor;16777215	//Display Chart background color RGB value	
show_mode;0	<pre>//Spectrometer display option 0=RawData, 1=Dark, 2=Reference,</pre>	
	3=Dark Subtracted, 4=%TR, 5=Absorbance, 6=Absolute Irradiance	
data_mode;0	//Transmit data mode, 0=Binary, 1=ASCII (obsolete)	
pixel_mode;0	<pre>//Display Chart Mode 0=normal, 1=Pixel Monitoring (obsolete)</pre>	
<pre>intigration times(ms);1</pre>	<pre>//Spectrometer integration time of saved data</pre>	
average number;1	//Spectrometer average number of saved data	
time_multiply;1	//Integration time multiplier	
spectrometer_type ;17	//Spectrometer model id number	
yaxis;1	//Display Chart Y-axis Setting (0=Auto, 1=Manual)	
yaxis_min;0	//Display Chart Y-axis Minimum, if Y-axis setting is Manual	
yaxis_max;65535	//Display Chart Y-axis Maximum, if Y-axis setting is Manual	
xaxis;1	//Display Chart X-axis Setting (0=Auto, 1=Manual)	
xaxis_min;71	//Display Chart X-axis Minimum, if X-axis setting is Manual	

19 Shea Way, Newark, DE 19713, USA

713, USA Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

xaxis_max;1949	//Display Chart X-axis Maximum, if X-axis setting is Manual
irrands_DispWLMin;100	//Display Chart X-axis Maximum, if X-axis setting is Manual and
	show_mode=6
irrands_DispWLMax;1000	//Display Chart X-axis Maximum, if X-axis setting is Manual and
	show_mode=6
yaxis_min_6;0	//Display Chart Y-axis Minimum, if Y-axis setting is Manual and
Junio	show_mode=6
yaxis_max_6;0	//Display Chart Y-axis Maximum, if Y-axis setting is Manual and
	show_mode=6
irradiance_unit;0	_ //absolute irradiance data unit (0=W/cm^2/nm, 1=mW/cm^2/nm,
	2=uW/cm^2/nm)
Color_Data_Flag;0	<pre>//data source for color calculation (0=%TR, 1=irradiance)</pre>
Color_StartWL;400	//Start wavelength of color calculation
Color_EndWL;700	<pre>//End wavelength of color calculation</pre>
Color_IncWL;10	<pre>//Step wavelength of color calculation in nm</pre>
<pre>power_unit_index;1</pre>	//Photometry Power Unit [0=(W/nm), 1=(mW/nm), 2=(Uw/nm),
	3=(uW/cm2/nm), 4=(uW/cm2/sr/nm), 5=(uW/sr/nm)]
photometric_index;0	<pre>//Photometric Conversion (0=Photopic, 1=Scotopic)</pre>
<pre>Illuminant_index;3</pre>	//Illuminant of color, (0=A, 1=B, 2=C, 3=D65, 4=E)
observer_index;0	//Observer of color, (0=2 degree, 1=10 degree)
lab_1;0	//Reference Color setting, 1 of Lab
lab_a;0	//Reference Color setting, a of Lab
lab_b;0	//Reference Color setting, b of Lab
radiometric_flag;0	<pre>//Photometric or Photopic or Scotopic flag (0=Photometric, 1=Photopic,</pre>
	2=Scotopic)
coefs_a0;732.04600000089	<pre>//The coefficients (A0) of Pixel convert to Wavelength</pre>
coefs_a1;0.25604999999995	9 //The coefficients (A1) of Pixel convert to Wavelength
coefs_a2;-4.9045000000025	3E-05 //The coefficients (A2) of Pixel convert to Wavelength
coefs_a3;8.18407999999919	E-10 //The coefficients (A3) of Pixel convert to Wavelength
coefs_b0;-29079.796555727	7 //The coefficients (B0) of Wavelength convert to Pixel
coefs_b1;97.1304303120123	<pre>//The coefficients (B1) of Wavelength convert to Pixel</pre>
coefs_b2;-0.1112416143772	63 //The coefficients (B2) of Wavelength convert to Pixel
coefs_b3;4.46263025785099	E-05 //The coefficients (B3) of Wavelength convert to Pixel
coefs_r0;325.634643285781	<pre>//The coefficients (R0) of Pixel convert to Raman shift</pre>
	(obsolete)
coefs_r1;-0.3718938458269	
	(obsolete)
coefs_r2;0.00085322096712	2155 //The coefficients (R2) of Pixel convert to Raman shift

19 Shea Way, Newark, DE 19713, USA

Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

	(obsolete)	
coefs_r3;3.37498265875635E-08	<pre>//The coefficients (R3) of Pixel convert to Raman shift</pre>	
	(obsolete)	
coefs_j0;-112.640169933252	<pre>//The coefficients (J0) of Raman shift convert to Pixel</pre>	
	(obsolete)	
coefs_j1;1.91244080985067	<pre>//The coefficients (J1) of Raman shift convert to Pixel</pre>	
	(obsolete)	
coefs_j2;-0.000774766051834558	<pre>//The coefficients (J2) of Raman shift convert to Pixel</pre>	
	(obsolete)	
coefs_j3;1.20204126521674E-07	<pre>//The coefficients (J3) of Raman shift convert to Pixel</pre>	
	(obsolete)	
enable_coefs_r;0	<pre>//Use coefficient R0R3 Enable (0=Disable, 1=Enable)</pre>	
all_data_save;1	//all pixel data saved (0=No, 1=Yes)	
<pre>select_option;-1</pre>	//(obsolete)	
interval_time;1	//(obsolete)	
pixel_num;2048	//total pixel number	
<pre>sel_pixel_start;31</pre>	<pre>//start pixel for calculate RMS (obsolete)</pre>	
<pre>sel_pixel_end;2047</pre>	<pre>//end pixel for calculate RMS (obsolete)</pre>	
<pre>sel_pixel_delta;1</pre>	<pre>//interval pixel for calculate RMS (obsolete)</pre>	
dark_compensate;0	//Dark compensate Enable. (0=Disable, 1=Enable)	
<pre>dark_compensate_value_1;0</pre>	//(obsolete)	
<pre>dark_compensate_value_2;0</pre>	//(obsolete)	
<pre>dark_compensate_value_3;0</pre>	//(obsolete)	
monitor pixel_0;0	//(obsolete)	
monitor pixel_1;0	//(obsolete)	
monitor pixel_2;0	//(obsolete)	
monitor pixel_3;0	//(obsolete)	
monitor pixel_4;0	//(obsolete)	
monitor pixel_5;0	//(obsolete)	
<pre>vertical_select_flag;0</pre>	//(obsolete)	
vertical_line3;0	//(obsolete)	
vertical_line4;0	//(obsolete)	
vertical_line3_wv;349.60	//(obsolete)	
vertical_line4_wv;349.60	//(obsolete)	
vertical_line_flag;0	//(obsolete)	
vertical_line_ratio;0	//(obsolete)	
laser_wavelength;784.5	<pre>//Raman excitation wavelength, not used if enable_coefs_r=1</pre>	
laser_powerlevel;0	//laser power setting	

19 Shea Way, Newark, DE 19713, USA

Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

overlay_js;0 //(obsolete)
Relative Intensity Correction Flag;0 //(obsolete/not defined)

Pixel;Wavelength;Wavenumber;Raman Shift;Dark;Reference;Raw data #1;Dark Subtracted #1;%TR #1;Absorbance #1;Irradiance (lumen) #1;

0;;;;1439.0000;65535.0000;1793.0000;354.0000;0.0000;0.0000;0.0000; //pixel 0's data 1;;;;1439.0000;65535.0000;1793.0000;354.0000;0.0000;0.0000;0.0000; //pixel 1's data 2;;;;1234.0000;65535.0000;1307.0000;73.0000;0.0000;0.0000;0.0000; //pixel 2 's data 3;etc.

Appendix B: Declaration of TXTR File

The TXTR (TXT Raman) text file has two block areas: flag block and data block. The flag block contains acquisition parameters and settings. The data block contains the acquired spectra data (highlighted by yellow). The flag block length may vary and an example of text file is shown below.

- TXTR has extra data blocks to store the intensity correction ratio spectra (including Relative intensity correction ratio, Reference Material Correction Ratio, and Absolute Irradiance Correction Ratio). This ensures the integrity of spectral files and makes it easy to transport and reprocess them without loss of critical information.
- 2. TXTR added data processing audit trails to spectral file header to record the treatment steps for the Dark Subtracted (Processed Data) block starting from the Raw Data block. These are the numbered Pretreat lines and can be viewed in Spectrum List Panel.
- 3. Users are recommended to use this new file format.
- 4. File conversion utility can convert format between TXT and TXTR.

File Format;TXTR	//File Format	
File Description;TXT(Raman) file	//File Description	
File Version;BWRam4.11	//File Version	
Run Name;	//Custom defined Run Name	
Product Name;	//Custom defined Product Name	
Batch No;	//Custom defined Batch Number	
Lot No;	//Custom defined Lot Number	
Sample Supplier;	//Custom defined Sample Supplier	
Sample Notes;	//Custom defined Sample Notes	
Date;2017-05-24 01:22:41	//Date of File Creation	
title;NNN	//Spectrometer title name that saved data	
model;BRC112-FIT11	//Spectrometer model	
c code;NNN	//Spectrometer serial number	
operator;	//Operator that saved file	
pixel_start;0	//Sensor start pixel	
pixel_end;2047	//Sensor end pixel	
units;3	<pre>//X-axis unit (0=Pixel, 1=wavelength, 2=wavenumber,</pre>	
	3=Raman shift)	
show_mode;3	<pre>//Y-axis option (0=Raw,1=Dark,2=Reference,3=Dark Subtracted,</pre>	
	4=%TR, 5=Absorbance,6=Absolute Irradiance)	
data_mode;0	//Transmit data mode, 0=Binary, 1=ASCII (obsolete)	
pixel_mode;0	<pre>//Display Chart Mode .0=normal, 1=Pixel Monitoring (obsolete)</pre>	
<pre>integration times(ms);1</pre>	<pre>//Spectrometer integration time of saved data</pre>	

19 Shea Way, Newark, DE 19713, USA

SA Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

integration times unit;1 //Spectrometer integration time unit setting (0=us, 1=ms, time_multiply;1 average number;1 spectrometer_type;17 yaxis;1 yaxis_min;0 yaxis_max;65535 xaxis;1 xaxis_min;0 xaxis_max;2047 pixel_num;2048 coefs_a0;372.651160422713 coefs_a1;0.273948279117576 coefs_a2;-3.32083876761757E-05 coefs a3;-1.81673008524375E-09 coefs_b0;-2649.51440443471 coefs_b1;11.5617187502648 coefs b2;-0.0166223418721358 coefs b3;1.21997080526348E-05 coefs_r0;1 coefs_r1;0 coefs_r2;0 coefs r3;0 coefs j0;1 coefs_j1;0 coefs_j2;0 coefs_j3;0 enable_coefs_r;0 laser wavelength;0 laser_powerlevel;0 probe_index;0 probe_name;

2=sec, 3=min) //Spectrometer Integration time multiplier //Number of spectral averages //Spectrometer model ID number //Display Chart Y-axis Setting (0=Auto, 1=Manual) //Display Chart Y-axis Minimum, if Y-axis setting is Manual //Display Chart Y-axis Maximum, if Y-axis setting is Manual //Display Chart X-axis Setting (0=Auto, 1=Manual) //Display Chart X-axis Minimum, if X-axis setting is Manual //Display Chart X-axis Maximum, if X-axis setting is Manual //Sensor Pixel number //The coefficients (A0) of Pixel convert to Wavelength //The coefficients (A1) of Pixel convert to Wavelength //The coefficients (A2) of Pixel convert to Wavelength //The coefficients (A3) of Pixel convert to Wavelength //The coefficients (B0) of Wavelength convert to Pixel //The coefficients (B1) of Wavelength convert to Pixel //The coefficients (B2) of Wavelength convert to Pixel //The coefficients (B3) of Wavelength convert to Pixel //The coefficients (R0) of Pixel convert to Raman shift //The coefficients (R1) of Pixel convert to Raman shift //The coefficients (R2) of Pixel convert to Raman shift //The coefficients (R3) of Pixel convert to Raman shift //The coefficients (J0) of Raman shift convert to Pixel //The coefficients (J1) of Raman shift convert to Pixel //The coefficients (J2) of Raman shift convert to Pixel //The coefficients (J3) of Raman shift convert to Pixel //Use coefficient R0..R3 Enable. (0=Disable, 1=Enable) //Raman excitation wavelength (nm) //Laser power level (percent) //Probe index //Probe name //Dark compensate Enable. (0=Disable, 1=Enable) //The order number of linearity correction //The coefficients (D0) of linearity correction //The coefficients (D1) of linearity correction //The coefficients (D2) of linearity correction

19 Shea Way, Newark, DE 19713, USA

Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

dark_compensate;0

numcoeff_d;7

coefs d0;0 coefs_d1;1

coefs d2;0

coefs_d3;0 coefs_d4;0 coefs_d5;0 coefs_d6;0 coefs d7;0 irradiance lamp inttime;1 irradiance_lamp_unitindex;0 Color_Data_Flag;0 Color_StartWL;400 Color_EndWL;700 Color_IncWL;10 power_unit_index;1 photometric_index;0 Illuminant_index;3 observer index;0 lab_1;0 lab_a;0 lab b;0 radiometric_flag;0 Data Pretreat_0; Data Pretreat_1; Data Pretreat 2; Data Pretreat 3; Data Pretreat_4; Data Pretreat_5; Data Pretreat_6; Data Pretreat 7; Data Pretreat 8; Data Pretreat_9; Data Pretreat_10; Data Pretreat_11; Data Pretreat 12; Data Pretreat 13; Data Pretreat 14; Data Pretreat_15; Data Pretreat 16;

//The coefficients (D3) of linearity correction //The coefficients (D4) of linearity correction //The coefficients (D5) of linearity correction //The coefficients (D6) of linearity correction //The coefficients (D7) of linearity correction //int time used when creating irradiance correction ratio //lamp unit that used to crate irradiance correction ratio //data source for calculation color (0=%TR, 1=absorbance) //Start wavelength of calculation color //End wavelength of calculation color //Step wavelength of calculation color //Color Unit[0=(W/nm), 1=(mW/nm), 2=(Uw/nm), 3=(uW/cm2/nm), 4=(uW/cm2/sr/nm), 5=(uW/sr/nm)] //Photometric Conversion (0=Photopic, 1=Scotopic) //Illuminant of color, (0=A, 1=B, 2=C, 3=D65, 4=E) //Observer of color, (0=2 degree, 1=10 degree) //Reference Color setting, 1 of Lab //Reference Color setting, a of Lab //Reference Color setting, b of Lab //Photometric or Photopic or Scotopic flag (0=Photometric, 1=Photopic, 2=Scotopic) //Data pretreat process step 0 //Data pretreat process step 1 //Data pretreat process step 2 //Data pretreat process step 3 //Data pretreat process step 4 //Data pretreat process step 5 //Data pretreat process step 6 //Data pretreat process step 7 //Data pretreat process step 8 //Data pretreat process step 9 //Data pretreat process step 10 //Data pretreat process step 11 //Data pretreat process step 12 //Data pretreat process step 13 //Data pretreat process step 14 //Data pretreat process step 15

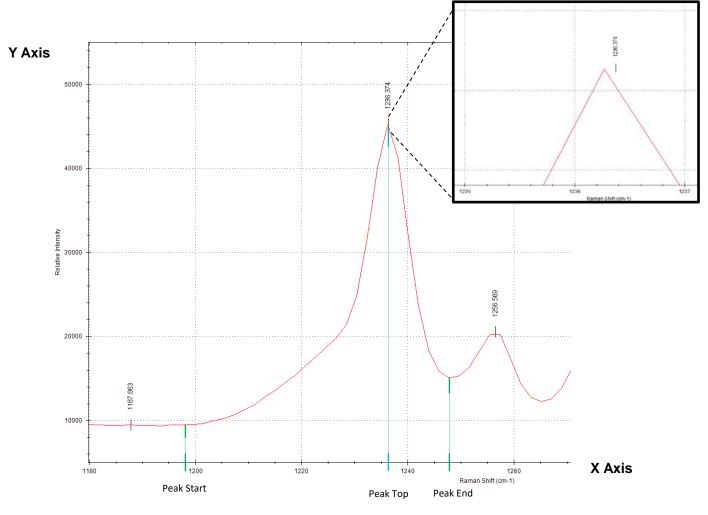
//Data pretreat process step 16

19 Shea Way, Newark, DE 19713, USA

A Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830 Web: www.bwtek.com

Data Pretreat_17;	//Data pretreat process step 17
Data Pretreat_18;	//Data pretreat process step 18
Data Pretreat_19;	//Data pretreat process step 19
Data Pretreat_20;	//Data pretreat process step 20
Data Pretreat_21;	//Data pretreat process step 21
Data Pretreat_22;	<pre>//Data pretreat process step 22</pre>
Data Pretreat_23;	<pre>//Data pretreat process step 23</pre>
Data Pretreat_24;	//Data pretreat process step 24
Data Pretreat_25;	//Data pretreat process step 25
Data Pretreat_26;	//Data pretreat process step 26
Data Pretreat_27;	//Data pretreat process step 27
Data Pretreat_28;	//Data pretreat process step 28
Data Pretreat_29;	//Data pretreat process step 29

0;372.65;26834.75;-26834.75;1227.0000;65535.0000;1339.0000;112.0000;0.0000;0.0000;0.0000;1.0 000;1.0000;1.0000; //pixel 0 data

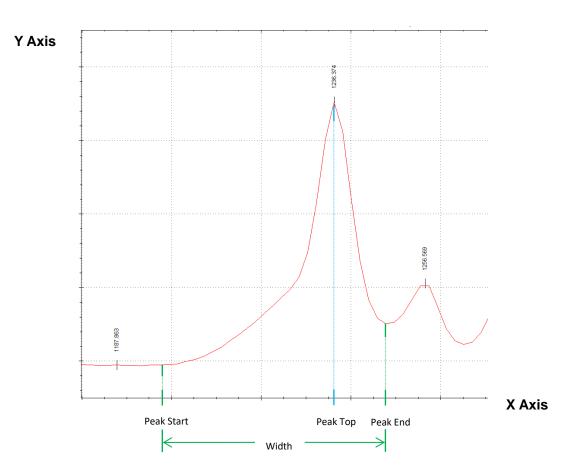


Appendix C: Peak Property Values

This is an overview of Peak Position and Properties, used in Peak Analysis and Peak Monitor Setup (Basic Measurement Type). Peak position is determined by curve fitting, instead of using the position of the highest pixel. This allows for a more accurate representation of the actual peak, and becomes more obvious when a peak lands in-between adjacent pixels - with one pixel usually being slightly higher than the other – and the peak calculated accordingly.

In Peak Analysis, the peak is determined by the Minimum Absolute Height and Minimum Peak Width criteria. In *Peak Monitor Setup, the highest point found within the Start and End Position will be taken as the peak.*

The following examples use a practical example of the 1236 cm⁻¹ peak of a standard Acetaminophen (Tylenol) sample. The curve fitted peak position is 1236.374 cm⁻¹, while the highest pixel is 1236.3 cm⁻¹, refer to the close up of the peak. This peak was chosen because of its closeness to its neighboring 1257 cm⁻¹ peak, giving an uneven looking peak to better visualize the peak picking algorithms. The 1257 cm⁻¹ peak also gives a perfect example of a peak in-between two pixels.



19 Shea Way, Newark, DE 19713, USA

Tel: +1 (302) 368-7824 Fax: +1 (302) 368-7830

Web: www.bwtek.com

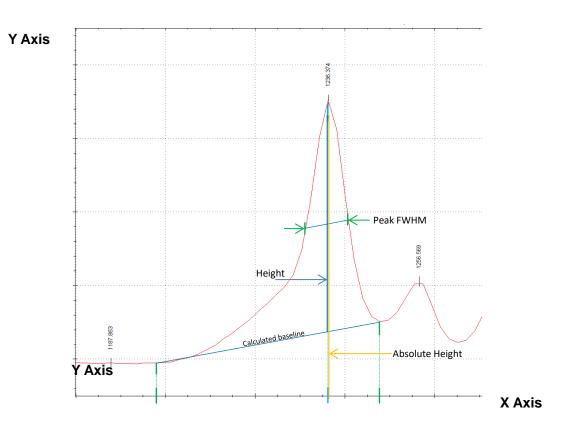
Peak Monitor Setup's Basic Measurement Type provides options for determining where on the peak to measure and what units are being measured. The **Start** and **End** of a peak is determined by the beginning rise of the peak compared to the baseline (left side), or the sudden rise of the next peak (right side). The **Top** of the peak is determined by curve fitting. Here is a simplified breakdown of the options; for example the **Ramanshift Start** gives the x-axis Raman Shift value of the beginning of the peak, and is found to be 1197 cm⁻¹.

Peak Start: The x-axis value of the beginning of the peak (left side).

Peak Top: The x-axis value of the curve fitted peak position.

Peak End: The x-axis value of the end of the peak (right side).

Width: Subtraction of Peak Start from Peak End.

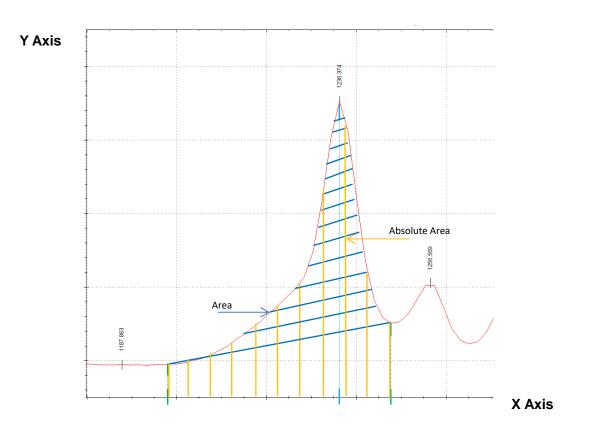

Peak (Ramanshift): Gives the Raman Shift value (X Axis)

Peak (Wavelength): Gives the Wavelength value (X Axis)

Peak (Wavenumber): Gives the Wavenumber value (X Axis)

Peak (Pixel): Gives the Pixel value (X Axis)

Peak FWHM: Full Width of the peak's Half Maximum. Calculated beginning from half the peak's height on each side, then the width of those half height values.


Height: Y-axis value of Peak Top measured from the calculated baseline.

Absolute Height: Y-axis value of Peak Top measured from zero.

Height %: Peak height divided by the sum of all peaks height

Absolute Height %: Absolute height divided by the sum of all peaks absolute height.

Area: Area is defined by the Height (above baseline) and Width; blue shaded area.

Absolute Area: Area is defined by the Absolute Height and Width; yellow shaded area.

Area %: Area divided by the sum of all peaks Areas.

Absolute Area %: Absolute Area divided by the sum of all peaks Absolute Areas.

Fitted Curve X: Performs a fitted curve splining between the 2 set points and reports the center X value. **Fitted Curve Y**: Performs a fitted curve splining between the 2 set points and reports the center Y value. Manual Peak Area: Manually select the baseline removal points and calculated area start end end.