Produkt in den Warenkorb gelegt
TECHSPEC® components are designed, specified, or manufactured by Edmund Optics. TECHSPEC® components are designed, specified, or manufactured by Edmund Optics. Learn More

Plankonvexe Linse (PCX), 12,5 mm D. x 45 mm BW, unbeschichtet

×
Produkt #37-793 3-4 Tage
×
Andere Beschichtungen
×
Quantity Selector - Use the plus and minus buttons to adjust the quantity. +
€28,00
Stk. 1-9
€28,00
Stk. 10+
€25,25
Mengenrabatte
Angebotsanfrage
Preise exklusiv der geltenden Mehrwertsteuer und Abgaben
Downloadbereich
Durchmesser (mm):
12.50 +0.0/-0.025
Effektive Brennweite EFL (mm):
45.00 @ 587.6nm
Hintere Brennweite BFL (mm):
43.68
Beschichtung:
Uncoated
Substrat: Many glass manufacturers offer the same material characteristics under different trade names. Learn More
Oberflächenqualität:
40-20
Power (P-V) @ 632,8 nm:
1.5λ
Unregelmäßigkeit (P-V) @ 632,8 nm:
λ/4
Toleranz Brennweite (%):
±1
Zentrierung (Bogenminuten):
<1
Mittendicke CT (mm):
2.00 ±0.05
Randdicke ET (mm):
1.14
Radius R1 (mm):
23.26
Freie Apertur CA (mm):
11.5
Blende:
3.6
Numerische Apertur NA:
0.14
Typ:
Plano-Convex Lens
Fase:
Protective bevel as needed
Wellenlängenbereich (nm):
350 - 2200

Konformität mit Standards

RoHS:
Konformitätszertifikat:

Beschreibung Produktfamilie

  • Wellenlängenbereich von 350 - 2200 nm
  • Präzise Durchmesser- und Zentrierungstoleranzen sorgen für erleichterte OEM-Integration
  • Große Auswahl an Diametern, Brennweiten, und Beschichtungen
  • Verschiedene Antireflexionsbeschichtungen erhältlich: MgF2, VIS 0°, VIS-NIR, NIR I, NIR II, VIS-EXT und YAG-BBAR

Die unbeschichteten TECHSPEC® plankonvexen Linsen (PCX) haben positive Brennweiten und sind ideal für die Sammlung und Fokussierung von Licht in abbildenden Anwendungen. Sie können gut in Verbindung mit Emittern, Detektoren, Lasern und Faseroptiken eingesetzt werden. Plankonvexe Linsen sind ideal für eine Vielzahl von optischen und photonischen Anwendungen, einschließlich biotechnologischer Instrumente wie DNA-Sequenzierer und Polymerase-Kettenreaktion-Testplattformen (PCR-Tests). TECHSPEC Unbeschichtete plankonvexe Linsen (PCX) sind in einer Vielzahl von Durchmessern und Brennweiten erhältlich. Identische Designs dieser Linsen werden auch mit breitbandigen Antireflexionsbeschichtungen (BBAR) angeboten, dazu gehören MgF2, VIS 0°, VIS-NIR, NIR I, NIR II, VIS-EXT und YAG-BBAR.

These coatings minimize surface reflections and maximize light transmission across different spectral ranges, ensuring optimal performance in various imaging and photonics applications. Whether for general use or specialized needs, TECHSPEC® PCX Lenses deliver precision and adaptability to enhance the effectiveness of optical systems.

Customers can utilize TECHSPEC® Uncoated Plano-Convex (PCX) Lenses in various ways:

  • For emitters and detectors, these lenses are ideal for focusing and collimating light to enhance signal detection.
  • In laser applications, they can be used to focus laser beams or to couple light efficiently into optical fibers, improving the performance of laser systems.
  • For fiber optics, PCX lenses help couple light between fibers and other optical components, optimizing signal transmission and minimizing loss.
  • In biotech instruments such as DNA sequencers and PCR testing platforms, these lenses focus light onto samples or detectors. Their ability to provide precise light collection and focusing enhances the accuracy and reliability of optical measurements, making them essential for high-resolution imaging and detection tasks.

By integrating TECHSPEC® Uncoated PCX Lenses into these systems, customers can achieve improved optical performance and enhanced functionality across various photonics and optical applications.

TECHSPEC Uncoated Plano-Convex (PCX) Lenses are available in a variety of diameters, focal lengths, and optical materials.  Plano-convex lenses are manufactured from high quality materials such as UV Grade Fused Silica, N-BK7 Optical Glass, and a wide variety of Infrared (IR) materials. Different materials are useful for a variety of applications; review our lens material selection tech note for additional information.

Technische Informationen

N-BK7

Typical transmission of a 3mm thick, uncoated N-BK7 window across the UV - NIR spectra.

Click Here to Download Data

Typical transmission of a 3mm thick N-BK7 window with MgF2 (400-700nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Ravg ≤ 1.75% @ 400 - 700nm (N-BK7)

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Typical transmission of a 3mm thick N-BK7 window with VIS-EXT (350-700nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Ravg ≤ 0.5% @ 350 - 700nm

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Typical transmission of a 3mm thick N-BK7 window with VIS-NIR (400-1000nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Rabs ≤ 0.25% @ 880nm
Ravg ≤ 1.25% @ 400 - 870nm
Ravg ≤ 1.25% @ 890 - 1000nm

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Typical transmission of a 3mm thick N-BK7 window with VIS 0° (425-675nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Ravg ≤ 0.4% @ 425 - 675nm

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Typical transmission of a 3mm thick N-BK7 window with YAG-BBAR (500-1100nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Rabs ≤ 0.25% @ 532nm
Rabs ≤ 0.25% @ 1064nm
Ravg ≤ 1.0% @ 500 - 1100nm

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Typical transmission of a 3mm thick N-BK7 window with NIR I (600 - 1050nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Ravg ≤ 0.5% @ 600 - 1050nm

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Typical transmission of a 3mm thick N-BK7 window with NIR II (750 - 1550nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Rabs ≤ 1.5% @ 750 - 800nm
Rabs ≤ 1.0% @ 800 - 1550nm
Ravg ≤ 0.7% @ 750 - 1550nm

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Filter

Antireflexbeschichtungen

Antireflexbeschichtungen ⇒ höhere Leistungsfähigkeit der Optiken ✓ Funktionsweise erklärt ✓ Spezifikationen von BBAR-Beschichtungen ⇒ mehr erfahren!

View Now

Eine Einführung in optische Beschichtungen

Edmund Optics erklärt optische Beschichtungen ⇒ Beschichtungsverfahren ✓ Veränderung von Transmission, Reflexion + Polarisation ⇒ mehr erfahren!

View Now

Auswirkung der Linsengeometrie auf die Abbildungsleistung

Der Vergleich von Asphären, Achromaten und sphärischen PCX-Linsen in verschiedenen Situationen zeigt die ideale Anwendung für jeden Linsentyp.

View Now

Hintergrundinformationen zu optischen Spezifikationen

Do you want to know more about the importance of optical specifications? Learn the different types of specifications and their impact on your system at Edmund Optics.

View Now

SAG Calculator

Future of Spherical Lenses

Traditional spherical lenses are evolving due to the increasing demands of applications. Learn about the future of spherical lenses at Edmund Optics.

View Now

Randschwärzung bei Optiken

Haben Sie Fragen zum Thema Randschwärzung? Infos zu Streulicht, BRDF-Messung und mehr jetzt bei Edmund Optics.

View Now

Geometrical Optics 101: Paraxial Ray Tracing Calculations

Do you use ray tracing on a regular basis? Learn more about the calculations aspect, along with steps and software at Edmund Optics.

View Now

Anwendungsbeispiele für Optiken

Anwendungsbeispiele für Optiken ⇒ PCX- & DCX-Linse ✓ Detektorsysteme ✓ optische Systeme mit Achromaten & aspärischen Linsen ⇒ mehr erfahren!

View Now

Understanding Optical Lens Geometries

Optical lens geometries control light in different ways. Learn about Snell's Law of Refraction, lens terminology and geometries at Edmund Optics.

View Now

Precision Tolerances for Spherical Lenses

Optical lenses require very precise tolerances. Learn more about tolerances for spherical lenses at Edmund Optics.

View Now

Keys to Cost Effective Optical Design and Tolerancing

Are you looking for ways to make cost effective optical designs? Find more information on selecting specifications and using tolerancing schemes at Edmund Optics.

View Now

How do I clean my lenses?

Is it possible to find Plano-Concave (PCV) or Double Concave (DCV) lenses where the diameter is greater than the focal length?

How does reversing the orientation of a PCX lens affect the EFL and BFL in a setup?

Plano-Concave (PCV) Lens

Plano-Convex (PCX) Lens

Doppelkonkave Linse (DCV-Linse)

Doppelkonvexe Linse (DCX-Linse)

Meniscus Lens

Advantages of Using Meniscus Lenses in Infrared Applications

Meniscus lenses offer superior performance compared to plano convex lenses in IR applications. Find out the benefits of using a meniscus lens at Edmund Optics.

View Now

Entwurf eines eigenen Strahlaufweiters aus Standard-Optikkomponenten

Erfahren Sie mehr über den Aufbau eines eigenen Strahlaufweiters aus Standard-Optikkomponenten - jetzt bei Edmund Optics!

View Now

Modifying Stock Optics Tip #3: Turn A Sphere Into An Asphere

Join Andrew Fisher, Manufacturing R&D Engineer at Edmund Optics, as he discusses some tips for modifying stock optical components to fit your application's needs.

View Now

I am looking to prototype an illumination system. My objective is to use a small halogen filament bulb and end up with a beam of light. What would be the best lens or lens combination to give me this projected spot of light?

What is the difference between the effective focal length and the back focal length?

What are the benefits of aspheric lenses compared to standard singlet lenses?

Sag

Hintere Brennweite (BFL)

Field Curvature

Schnelle Prototypen von Optiken

Edmund Optics zeigt, wie Sie schnell auf kürzer werdende Produktlebenszyklen reagieren. Erfahren Sie mehr!

View Now

Optisches Glas und seine Eigenschaften

Optisches Glas ⇒ Dichte ✓ Brechungsindex ✓ Abbe-Zahl ✓ Kompensierung von Aberrationen ✓ umweltfreundliche Prozesse ⇒ mehr erfahren!

View Now

Abberationen

Aberration Optik ⇒ sphärische Aberration ✓ Astigmatismus ✓ Bildfeldkrümmung ✓ chromatische Fokusverschiebung ⇒ mehr erfahren!

View Now

Das Airy-Scheibchen und die Beugungsgrenze

Airy-Scheibchen und die Beugungsgrenze ⇒ Beugungsmuster ✓ maximales Auflösungsvermögen ✓ Punktgröße ✓ Grenzfrequenz eines Objektivs ⇒ mehr erfahren!

View Now

What is the difference between an inked lens and a non-inked one?

If I want to design with your lenses and lens assemblies, how do I get the information that I need?

Now that I have chosen my lens, how do I mount it?

Power

Singlet Lens

Mittendicke

Chromatische Fokusverschiebung

Konjugierte Größen

Épaisseur de bord

Distance focale effective (EFL)

Finite/Finite Conjugate

How to Determine Magnification of an Optical Lens Setup

When doing basic imaging, how do you determine the magnification an optical lens will provide?

View Now

Understanding Collimation to Determine Optical Lens Focal Length

Collimated light occurs when light rays travel parallel to each other.

View Now

How to Form an Image with an Optical Lens Setup

Although a common misconception, individual optical lenses do not always form an image when the object plane is placed a focal length away from the lens.

View Now

Modifying Stock Optics Tip #4: Add A Coating To A Stock Lens

Join Andrew Fisher, Manufacturing R&D Engineer at Edmund Optics, as he discusses some tips for modifying stock optical components to fit your application's needs.

View Now

Radius of Curvature

Irregularity

BBAR-Beschichtung

Dioptrie

Grundlagen zur Oberflächenqualität

Grundlagen der Oberflächenqualität ⇒ Unterschied MIL-PRF-13830B & ISO 10110 ✓ wichtig für Laseranwendungen ✓ Scratch-Dig-Wert ⇒ mehr erfahren!

View Now

Seamed Edge

Antireflexionsbeschichtung

Fase

Einführung in die Grundlagen der Strahlenoptik

Ein Verständnis von Brechung und Strahlenoptik ist die Grundlage für das Verständnis von komplizierteren optischen Zusammenhängen & Technologien.

View Now

Surface Flatness

Transmission

How do I clean my optics?

Refraction

Freie Apertur

Integration of Optical Systems

Are you looking to use integration in your next system? Find out more about integrating in both imaging and non-imaging applications at Edmund Optics.

View Now

Stock and Custom Optics Manufacturing Capabilities

Edmund Optics is a global stock and custom optics manufacturing company with in house optical designers and on-site metrology and environmental testing.

View Now

Globale Fertigungsstätten von EO

Edmund Optics® (EO) fertigt jedes Jahr Millionen von präzisen optischen Komponenten und Baugruppen in den 5 globalen Fertigungsstätten.

View Now

Video: Messtechnik bei Edmund Optics

Messtechnik als Schlüssel für eine erfolgreiche Fertigung: Erfahren Sie mehr über die Messtechnik, die die Qualität der Optiken sicherstellt.

View Now

Surface Quality

Titel  Typ Vergleichen Artikelnummer   Preis  Kaufen
X-Y-verstellbare Optikhalterung, 12,7 mm Adjustable - Linear (XY) #62-955 €239,00
Angebotsanfrage
  • 3-4 Tage
    ×
X-Y-Z-verstellbare Optikhalterung, 12,7 mm Adjustable - Linear (XYZ) #62-958 €393,00
Angebotsanfrage
  • 3-4 Tage
    ×
 
Vertrieb & Beratung
 
weitere regionale Telefonnummern
Einfaches
ANGEBOTSTOOL
Geben Sie zum Starten die Produktnummer ein.