Edmund Optics® nutzt sowohl eigene Cookies als auch Cookies von Drittanbietern, um die technischen Funktionen auf der Website zu optimieren. Hier erfahren Sie mehr darüber, wie wir Cookies verwenden.

  • Land/Region
Resource Page / Anwendungshinweise / Laser / Understanding Spatial Filters
Understanding Spatial Filters
Edmund Optics Inc.

Understanding Spatial Filters

Spatial Filters are designed to be used with lasers to "clean up" the beam. Often times a laser system does not produce a beam with a smooth intensity profile. In order to produce a clean Gaussian beam, a spatial filter is used to remove the unwanted multiple-order energy peaks and pass only the central maximum of the diffraction pattern (see illustration). Also, when a laser beam passes through a system, dust in the air or on optical components can disrupt the beam and create scattered light. This scattered light can leave unwanted ring patterns in the beam profile. The spatial filter removes this additional spatial noise from the system. The spatial filter assembly consists of a microscope objective, a pinhole aperture, and a positioning mechanism. The positioning mechanism has precision X-Y movements that center the pinhole at the focal point of the objective lens. Our TECHSPEC® Laser Objectives are designed for HeNe lasers (632.8nm) and provide the smallest spot sizes possible. Choosing the correct pinhole and objective combination will yield optimal results. The following equations were used to determine the values for the Aperture Selection Chart.

Spatial Filter Assembly


(1)$$ \text{Beam Spot Diameter} \left[   \large{\unicode[arial]{x03BC}} \text{m} \right] = 1.27 \frac{\lambda \, f}{D} $$

λ = wavelength of laser (microns)
f = focal length of objective lens (mm)
D = input beam diameter (mm)


Pinhole size is then determined for the table (see note):

(2)$$ \text{Pinhole Diameter} \left[  \large{\unicode[arial]{x03BC}}  \text{m} \right] = 1.5 \times \text{Beam Spot Size Diameter} \left[  \large{\unicode[arial]{x03BC}}  \text{m} \right] $$


Note: The factor of 1.5 in Equation 2 is determined as the optimal factor in order to pass the maximum amount of energy, while eliminating as much spatial noise as possible.

The following table shows the optimal pinhole diameter calculated using Equation 1 and Equation 2. The actual pinhole used should be as close to this value as possible. Smaller diameter pinholes will reduce energy throughput, while larger diameter pinholes will pass more spatial noise.

Aperture Selection Chart
EFL of Microscope Objective Lens (mm)5.5mm8.0mm8.5mm9.0mm
1.84mm Input Beam Dia. 3.603349 5.241235 5.568812 5.896389
1.56mm Input Beam Dia. 4.250104 6.181969 6.568342 6.954715
1.44mm Input Beam Dia. 4.604279 6.697133 7.115704 7.534275
1.34mm Input Beam Dia. 4.947882 7.196919 7.646727 8.096534
1.31mm Input Beam Dia. 5.061192 7.361734 7.821843 8.281951
1.21mm Input Beam Dia. 5.479473 7.970142 8.468276 8.96641
0.92mm Input Beam Dia.





If you would like to see other topics covered or more detailed information, let us know. We invite you to discuss any suggestions or specific application requirements with our engineering department at 800-363-1992 or contacting us online.

War dieser Inhalt nützlich für Sie?

Variety of DPSS, diode, gas, or semiconductor lasers, as well as laser accessories for measuring, positioning, bar code scanning, life sciences, or machine vision applications.

Designed or tested for use with lasers, check out our selection of laser grade lenses, mirrors, filters, optics assemblies, and more.

Wenn Sie die Laser-Zerstörschwelle (LDT) kennen, können Sie beste Ergebnisse und eine lange Produktnutzungsdauer gewährleisten und Schäden an Ihrer Laseroptik vermeiden.

Benötigen Sie Hilfe bei der Auswahl der richtigen Produkte? Haben Sie Fragen zu Ihrer Anwendung? Nehmen Sie Kontakt mit uns auf und lassen Sie sich von unseren Experten beraten.

Angebot erwünscht? Bitte geben Sie eine Artikelnummer ein.

Edmund Optics Facebook Edmund Optics Twitter Edmund Optics YouTube Edmund Optics LinkedIn Edmund Optics Instagram