Produkt in den Warenkorb gelegt

Facettenlinsenarray 10 x 10 mm, 350 µm Pitch, 6,5° Divergenz

Microlens Arrays

Microlens Arrays
×
Produkt #12-844 3-4 Tage
×
Quantity Selector - Use the plus and minus buttons to adjust the quantity. +
€705,00
Stk. 1-10
€705,00
Stk. 11+
€620,00
Mengenrabatte
Angebotsanfrage
Preise exklusiv der geltenden Mehrwertsteuer und Abgaben
Downloadbereich
Effektive Brennweite EFL (mm):
1.59
Substrat: Many glass manufacturers offer the same material characteristics under different trade names. Learn More
Fused Silica (Corning 7980)
Beschichtung:
Uncoated
Typ:
Fly's Eye Lens Array
Wellenlängenbereich (nm):
200 - 2200
Freie Apertur CA (mm):
9.00 x 9.00
Toleranz Größe (mm):
±0.05
Größe (mm):
10.0 x 10.0
Divergenzwinkel (°):
±6.5
Linsenprofil:
Spherical
Pitch (μm):
350.00
Toleranz Pitch (μm):
±0.25
Radius R (mm):
0.73
Dicke (mm):
2.25
Toleranz Dicke (mm):
±0.05
Optiktyp:
Double-Convex
Fill Factor:
0.985

Konformität mit Standards

RoHS 2015:
Reach 219:
Konformitätszertifikat:

Beschreibung Produktfamilie

  • Quadratische Mikrolinsen- oder Facettenlinsenarrays
  • Präzise Quarzglassubstrate

Mikrolinsenarrays helfen eine Vielzahl von modernen Lichtquellen vom schmalbandigen Excimerlaser bis zu LEDs mit hoher Leistung zu homogenisieren. Mikrolinsen sind vor allem für Anwendungen geeignet, für die eine hohe Effizienz und eine nicht-gaußförmige Strahlverteilung benötigt wird. Alle Arrays sind aus Quarzglas hergestellt und können sehr gut zwischen 193 nm und 2,5 μm eingesetzt werden. Die Arrays werden mit Halbleitertechniken hergestellt, was zu einer sehr akkuraten Linsenform und präzisen Positionierung der einzelnen Linsen führt. Wir bieten unsere Arrays in zwei Versionen an.

Quadratische Mikrolinsenarrays

Unsere quadratischen Arrays sind in der Größe 10 mm x 10 mm mit einer Vielzahl von Linsenabständen und Brennweiten erhältlich. Quadratische Mikrolinsenarrays werden üblicherweise für die Strahlhomogenisierung und –formung verwendet und erzeugen ein Punktmuster oder ein quadratisches Flat-Top-Profil. Die Linsen bieten einen hohen Ausfüllungsgrad, was zur Auslöschung von überstrahlten Punkten erster Ordnung im beleuchteten Feld führt. Quadratische Arrays werden häufig als Paar in Kombination mit einer PCX-Linse verwendet. Typische Anwendungen sind Schweißen, Bohren, Laserablation und Fasereinkopplung.

Facettenlinsenarrays

Unsere Facettenlinsenarrays sind in zwei verschiedenen Abmessungen, 5 mm2 und 10 mm2, verfügbar und wurden zur Erzeugung von Flat-Top-Profilen und Linien entwickelt. Die Arrays sind aus einem Guss hergestellt und bestehen aus Zylindermikrolinsen mit zwei gekrümmten Oberflächen. Die Mikrolinsen werden meist in Anwendungen eingesetzt bei denen ein großes beleuchtetes Feld mit einem kurzen Arbeitsabstand benötigt wird (wie z. B. beim Einsatz von Medizinlasern, Solarsimulation, UV-Aushärtung, bei Halbleitergeräten und der Fluoreszenzmikroskopie).

Filter

Antireflexbeschichtungen

Antireflexbeschichtungen ⇒ höhere Leistungsfähigkeit der Optiken ✓ Funktionsweise erklärt ✓ Spezifikationen von BBAR-Beschichtungen ⇒ mehr erfahren!

View Now

Eine Einführung in optische Beschichtungen

Edmund Optics erklärt optische Beschichtungen ⇒ Beschichtungsverfahren ✓ Veränderung von Transmission, Reflexion + Polarisation ⇒ mehr erfahren!

View Now

Auswirkung der Linsengeometrie auf die Abbildungsleistung

Der Vergleich von Asphären, Achromaten und sphärischen PCX-Linsen in verschiedenen Situationen zeigt die ideale Anwendung für jeden Linsentyp.

View Now

Hintergrundinformationen zu optischen Spezifikationen

Do you want to know more about the importance of optical specifications? Learn the different types of specifications and their impact on your system at Edmund Optics.

View Now

SAG Calculator

Future of Spherical Lenses

Traditional spherical lenses are evolving due to the increasing demands of applications. Learn about the future of spherical lenses at Edmund Optics.

View Now

Randschwärzung bei Optiken

Haben Sie Fragen zum Thema Randschwärzung? Infos zu Streulicht, BRDF-Messung und mehr jetzt bei Edmund Optics.

View Now

Geometrical Optics 101: Paraxial Ray Tracing Calculations

Do you use ray tracing on a regular basis? Learn more about the calculations aspect, along with steps and software at Edmund Optics.

View Now

Anwendungsbeispiele für Optiken

Anwendungsbeispiele für Optiken ⇒ PCX- & DCX-Linse ✓ Detektorsysteme ✓ optische Systeme mit Achromaten & aspärischen Linsen ⇒ mehr erfahren!

View Now

Understanding Optical Lens Geometries

Optical lens geometries control light in different ways. Learn about Snell's Law of Refraction, lens terminology and geometries at Edmund Optics.

View Now

Precision Tolerances for Spherical Lenses

Optical lenses require very precise tolerances. Learn more about tolerances for spherical lenses at Edmund Optics.

View Now

Keys to Cost Effective Optical Design and Tolerancing

Are you looking for ways to make cost effective optical designs? Find more information on selecting specifications and using tolerancing schemes at Edmund Optics.

View Now

How do I clean my lenses?

Is it possible to find Plano-Concave (PCV) or Double Concave (DCV) lenses where the diameter is greater than the focal length?

How does reversing the orientation of a PCX lens affect the EFL and BFL in a setup?

Plano-Concave (PCV) Lens

Plano-Convex (PCX) Lens

Doppelkonkave Linse (DCV-Linse)

Doppelkonvexe Linse (DCX-Linse)

Meniscus Lens

Advantages of Using Meniscus Lenses in Infrared Applications

Meniscus lenses offer superior performance compared to plano convex lenses in IR applications. Find out the benefits of using a meniscus lens at Edmund Optics.

View Now

Entwurf eines eigenen Strahlaufweiters aus Standard-Optikkomponenten

Erfahren Sie mehr über den Aufbau eines eigenen Strahlaufweiters aus Standard-Optikkomponenten - jetzt bei Edmund Optics!

View Now

Modifying Stock Optics Tip #3: Turn A Sphere Into An Asphere

Join Andrew Fisher, Manufacturing R&D Engineer at Edmund Optics, as he discusses some tips for modifying stock optical components to fit your application's needs.

View Now

I am looking to prototype an illumination system. My objective is to use a small halogen filament bulb and end up with a beam of light. What would be the best lens or lens combination to give me this projected spot of light?

What is the difference between the effective focal length and the back focal length?

What are the benefits of aspheric lenses compared to standard singlet lenses?

Sag

Hintere Brennweite (BFL)

Field Curvature

Schnelle Prototypen von Optiken

Edmund Optics zeigt, wie Sie schnell auf kürzer werdende Produktlebenszyklen reagieren. Erfahren Sie mehr!

View Now

Optisches Glas und seine Eigenschaften

Optisches Glas ⇒ Dichte ✓ Brechungsindex ✓ Abbe-Zahl ✓ Kompensierung von Aberrationen ✓ umweltfreundliche Prozesse ⇒ mehr erfahren!

View Now

Abberationen

Aberration Optik ⇒ sphärische Aberration ✓ Astigmatismus ✓ Bildfeldkrümmung ✓ chromatische Fokusverschiebung ⇒ mehr erfahren!

View Now

Das Airy-Scheibchen und die Beugungsgrenze

Airy-Scheibchen und die Beugungsgrenze ⇒ Beugungsmuster ✓ maximales Auflösungsvermögen ✓ Punktgröße ✓ Grenzfrequenz eines Objektivs ⇒ mehr erfahren!

View Now

What is the difference between an inked lens and a non-inked one?

If I want to design with your lenses and lens assemblies, how do I get the information that I need?

Now that I have chosen my lens, how do I mount it?

Power

Singlet Lens

Mittendicke

Chromatische Fokusverschiebung

Konjugierte Größen

Épaisseur de bord

Distance focale effective (EFL)

Finite/Finite Conjugate

How to Determine Magnification of an Optical Lens Setup

When doing basic imaging, how do you determine the magnification an optical lens will provide?

View Now

Understanding Collimation to Determine Optical Lens Focal Length

Collimated light occurs when light rays travel parallel to each other.

View Now

How to Form an Image with an Optical Lens Setup

Although a common misconception, individual optical lenses do not always form an image when the object plane is placed a focal length away from the lens.

View Now

Modifying Stock Optics Tip #4: Add A Coating To A Stock Lens

Join Andrew Fisher, Manufacturing R&D Engineer at Edmund Optics, as he discusses some tips for modifying stock optical components to fit your application's needs.

View Now

Radius of Curvature

Irregularity

BBAR-Beschichtung

Dioptrie

Grundlagen zur Oberflächenqualität

Grundlagen der Oberflächenqualität ⇒ Unterschied MIL-PRF-13830B & ISO 10110 ✓ wichtig für Laseranwendungen ✓ Scratch-Dig-Wert ⇒ mehr erfahren!

View Now

Seamed Edge

Antireflexionsbeschichtung

Fase

Einführung in die Grundlagen der Strahlenoptik

Ein Verständnis von Brechung und Strahlenoptik ist die Grundlage für das Verständnis von komplizierteren optischen Zusammenhängen & Technologien.

View Now

Surface Flatness

Transmission

How do I clean my optics?

Refraction

Freie Apertur

Integration of Optical Systems

Are you looking to use integration in your next system? Find out more about integrating in both imaging and non-imaging applications at Edmund Optics.

View Now

Stock and Custom Optics Manufacturing Capabilities

Edmund Optics is a global stock and custom optics manufacturing company with in house optical designers and on-site metrology and environmental testing.

View Now

Globale Fertigungsstätten von EO

Edmund Optics® (EO) fertigt jedes Jahr Millionen von präzisen optischen Komponenten und Baugruppen in den 5 globalen Fertigungsstätten.

View Now

Video: Messtechnik bei Edmund Optics

Messtechnik als Schlüssel für eine erfolgreiche Fertigung: Erfahren Sie mehr über die Messtechnik, die die Qualität der Optiken sicherstellt.

View Now

Surface Quality

 
Vertrieb & Beratung
 
weitere regionale Telefonnummern
Einfaches
ANGEBOTSTOOL
Geben Sie zum Starten die Produktnummer ein.